
주식회사 커브

2014 - 2023 CURVC Corp. All rights reserved

SonarCFamily for C/C++ Rule List

Function-like macros 
should not be 
invoked without all 
of their arguments

Bug cwe, 
misra
, 
prepr
ocess
or

This is a constraint error, but preprocessors have been known to ignore this problem. Each argument in a function-like 
macro must consist of at least one preprocessing token otherwise the behaviour is undefined.

See
MISRA C:2004, 19.8 - A function-like macro shall not be invoked without all of its arguments.
MITRE, CWE-628 - Function Call with Incorrectly Specified Arguments

Stack allocated 
memory should not 
be freed

Bug unpre
dicta
ble

Stack allocated memory, like memory allocated with the functions alloca, _alloca, _malloca, __builtin_alloca, is 
automatically released at the end of the function, and should not be released with free. Explicitly free-ing such memory 
results in undefined behavior.

Noncompliant Code Example

void fun() {
 char *name = (char *) alloca(size);
 // ...
 free(name); // Noncompliant, memory allocated on the stack
 char *name2 = "name";
 // ...
 free(name2); // Noncompliant, memory allocated on the stack
}

Compliant Solution

void fun() {
 char *name = (char *) alloca(size);
 // ...
 char *name2 = "name";
 // ...
}

Closed resources 
should not be 
accessed

Bug cert Using the value of a pointer to a FILE object after the associated file is closed is undefined behavior.

Noncompliant Code Example

void fun() {
 FILE * pFile;
 pFile = fopen(fileName, "w");
if (condition) {
 fclose(pFile);
 // ...
 }
fclose(pFile); // Noncompliant, the file has already been closed
}

Compliant Solution

void fun() {
 FILE * pFile;
 pFile = fopen(fileName, "w");
if (condition) {
 // ...
 }
fclose(pFile);
}

See
CERT, FIO46-C. - Do not access a closed file



주식회사 커브

2014 - 2023 CURVC Corp. All rights reserved

Dynamically 
allocated memory 
should be released

Memory allocated dynamically with calloc(...), malloc(...), realloc(...) or new should be released when it's not needed 
anymore. Failure to do so will result in a memory leak that could bring the box to its knees.

This rule raises an issue when memory is allocated and not freed in the same function. Allocated memory is ignored if a 
pointer to it is returned to the caller or stored in a structure that's external to the function.

Noncompliant Code Example

int fun() {
 char* name = (char *) malloc (size);
 if (!name) {
 return 1;
 }
 // ...
 return 0; // Noncompliant, memory pointed by "name" has not been released
}

Compliant Solution

int fun() {
 char* name = (char *) malloc (size);
 if (!name) {
 return 1;
 }
 // ...
 free(name);
 return 0;
}

See
MITRE, CWE-401 - Improper Release of Memory Before Removing Last Reference ('Memory Leak')
MEM00-C. - Allocate and free memory in the same module, at the same level of abstraction
CERT, MEM31-C. - Free dynamically allocated memory when no longer needed

Freed memory 
should not be used

Once a block of memory has been freed, it becomes available for other memory requests. Whether it's re-used 
immediately, some time later, or not at all is random, and may vary based on load. Because of that randomness, tests may 
pass when running locally, but the odds are that such code will fail spectacularly in production by returning strange values, 
executing unexpected code, or causing a program crash.

Noncompliant Code Example

char *cp = malloc(sizeof(char)*10);
// ...
free(cp);
cp[9] = 0; // Noncompliant

See

MITRE, CWE-416 - Use After Free
CERT, MEM30-C. - Do not access freed memory
CERT, MEM50-CPP. - Do not access freed memory
CERT, EXP54-CPP. - Do not access an object outside of its lifetime



주식회사 커브

2014 - 2023 CURVC Corp. All rights reserved


	SonarCFamily for C/C++ Rule List

