

Redmine Plugin Extension and
Development

Build stunning extensions quickly and efficiently by
leveraging Redmine's plugin facilities

Alex Bevilacqua

 BIRMINGHAM - MUMBAI

Redmine Plugin Extension and Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1120314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-874-8

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Alex Bevilacqua

Reviewers
Shamasis Bhattacharya

Petr Pospíšil

Kevin Vicrey

Mischa The Evil

Acquisition Editors
Akram Hussain

Neha Nagwekar

Content Development Editor
Larissa Pinto

Technical Editors
Aman Preet Singh

Nachiket Vartak

Copy Editors
Alisha Aranha

Brandt D'Mello

Adithi Shetty

Project Coordinator
Jomin Varghese

Proofreader
Maria Gould

Graphics
Ronak Dhruv

Indexer
Monica Ajmera Mehta

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Alex Bevilacqua is an advocate for open standards, as well as a passionate and
enthusiastic open source developer with over 10 years of experience. He is skilled in
Ruby, Python, C#, Flash, Flex, JavaScript, and others.

He is the author of a number of Redmine extensions and plugins; two of the
most popular being the Redmine Knowledgebase and the Redmine Dropbox
Attachments plugin.

He currently works for a leading digital marketing company in Toronto where
he works on process automation, data collection, and aggregation initiatives. His
personal blog can be found at http://www.alexbevi.com.

I'd like to start by thanking my wife Sara for being patient with me
throughout this process (which should not have taken nearly as
long as it did). I'd also like to thank Jomin, Larissa, and Neha (from
Packt Publishing), and Misha, Kevin, Petr, and Shamasis (my expert
reviewers) for helping shape the book into what you now hold in
your hands.

Finally, a huge thanks to Jean-Philippe Lang, Eric Davis, Jean-
Baptiste Barth, and the rest of the Redmine core development team
for creating such a wonderfully extensible product.

About the Reviewers

Shamasis Bhattacharya has been a part of FusionCharts since 2008. As a
JavaScript architect, he heads the JavaScript development team and spends most
of his time analyzing, modeling, and coding the FusionCharts JavaScript charting
library with attention to smart software design, continuous delivery, and innovative
data visualization countenances.

He writes on his blog http://www.shamasis.net/, contributes to the community
on GitHub at http://github.com/shamasis, and spends the rest of his time with
his wife, Madhumita. He has also written the book FusionCharts Beginner's Guide: The
Official Guide for FusionCharts Suite, Packt Publishing.

Without my wife, Madhumita, tolerating my eccentricities, nothing
would have been possible!

Petr Pospíšil is a very skilled programmer with more than 14 years of experience
in commercial programming business. He has worked in banking, loan companies,
and international companies with more than 7,000 employees worldwide. His
experience in these companies was based on Microsoft technologies such as .NET
and SQL servers.

For the last four years, Petr has been totally focused on developing Easy Redmine,
working as the head of the department. Petr believes Easy Redmine to be the best
project management tool thanks to its adaptability and an awesome team that
contributes to the development of Easy Redmine. He has smoothly shifted from
Microsoft technologies to Ruby, Ruby on Rails, and Redmine.

Petr coaches the development team, takes care of the quality of the Redmine
core, and develops various useful plugins, not to mention his passion for rapidly
increasing sales. He also likes cooking and eating good meals and trekking in the
mountains with his cheerful fianceé.

Kevin Vicrey is a Web Development Engineer at Schneider Electric, in Montreal.
He has over eight years of experience in front end and back end programming,
using Redmine as the main project management tool. He holds a master's degree in
Computer Science. He worked at IBM (Montpellier, France) and Schneider Electric
(Boston, USA) as Lead Web Developer for five years. He has published many articles
on the Internet about web technologies (http://vickev.com).

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Introduction to Redmine Plugins 7

An introduction to our sample plugin 7
Generating a new plugin 8

Using custom gemsets in our plugin 10
Generating models and controllers 11

Diving into the initialization file 12
Plugin attributes 13
Initialization checks 14

Checking for a specific Redmine version 14
Ensuring the existence of other plugins 15

Extending core Redmine features 16
Working with Redmine menus 16
Initializing named permissions 17
Project module availability 18
Adding custom events to the activity stream 19
Registering custom text formatting macros 19

Summary 20
Chapter 2: Extending Redmine Using Hooks 21

Understanding hooks 21
View hooks 22
Controller hooks 24
Model hooks 25
Helper hooks 26
A sample view hook implementation 26

Identifying the callback 26
Integrating the hook 27
Creating the view partial 27

Summary 28

Table of Contents

[ii]

Chapter 3: Permissions and Security 29
Summarizing Redmine's permission system 29
Declaring custom permissions 31
Ensuring access restrictions in models, views, and controllers 33
Understanding custom content access control 36

Managing user whitelists 37
Restricting access via whitelists 38
Enforcing the whitelist 39

Summary 41
Chapter 4: Attaching Files to Models 43

Model preparation 43
Enabling attachments in our views 45
Controller modifications to accommodate attachments 46
Listing and managing attachments 47
Managing attachment permissions 49
Summary 51

Chapter 5: Making Models Searchable 53
Registering our plugin 53
Preparing our models to be searched 54
Configuring search options 55
Filtering search results using custom permissions 57
Including article content in the search 58
Summary 59

Chapter 6: Interacting with the Activity Stream 61
Overview of the activity stream 61
Preparing our model 63
Registering our model 63
Configuring an activity provider 64
Customizing activity entries 65
Summary 67

Chapter 7: Managing Plugin Settings 69
An overview of Redmine's global plugin settings 69
Enabling settings management 70
Configuration management 71
Exposing plugin methods to the settings partial 72
Accessing our settings 74
Summary 76

Table of Contents

[iii]

Chapter 8: Testing Your Plugin 77
Testing infrastructure layout 78
Basics of test fixtures 78

Working around a Redmine testing issue 79
Running tests 80
Writing functional tests 81
Writing integration tests 82
Writing unit tests 83
Preparing a test database 84
Continuous integration with Travis 84
Summary 86

Appendix: Releasing Your Plugin 89
Managing your plugin's source code 89
Starting a blog 90
Publishing your plugin on redmine.org 91
Announcing your plugin on redmine.org 92
Summary 93

Index 95

Preface
Imagine this: you stumble across a versatile open source project that outperforms
most proprietary systems you've tested against, but it falls short due to just one
simple yet critical missing feature. We've all been there before.

As hobbyists, developers, or just tinkerers, we dig into the code only to find that
although the codebase is clean and well documented, we're not really sure where
to start.

With Redmine, the answer to our dilemma is straightforward: write a plugin that
fills this blank we've identified, allowing us to quickly implement feature x without
having to hack the core system.

The Redmine authors have gone to great lengths to provide a plugin system that
is extensive enough to allow even the most complex solutions to be quickly and
efficiently implemented without having to resort to hacks.

This book will describe this plugin authorship process using an existing plugin that
has been in production for a number of years as the basis for the various features
we'll be implementing.

What this book covers
Chapter 1, Introduction to Redmine Plugins, provides an introduction to the basic
structure of a Redmine plugin as well as some preliminary initialization and
configuration settings.

Chapter 2, Extending Redmine Using Hooks, dives into how Redmine core components
such as internal models, views, controllers, and helpers can be extended from within
our plugin through the use of the hooks system.

Preface

[2]

Chapter 3, Permissions and Security, introduces the Redmine permissions system and
how our plugin can make use of this existing infrastructure. It also includes a case
study on how a custom access control system can be implemented by a plugin in
order to limit access to content in a more granular fashion.

Chapter 4, Attaching Files to Models, highlights how quickly Redmine's built-in file
attachment components can be added to our plugin models, views, and controllers.

Chapter 5, Making Models Searchable, walks the user through how some of
Redmine's core plugins can be used to allow a plugin model's content to be included
within the search system. It also covers how permissions are used to limit search
results, and even how the default search functionality provided through Redmine's
core plugin can be overridden, allowing us to further limit results using custom logic
or permissions.

Chapter 6, Interacting with the Activity Stream, introduces another core Redmine
plugin that allows us to inject custom events into a project's activity stream. It also
covers how activity events are defined and formatted and how activity providers are
configured and registered.

Chapter 7, Managing Plugin Settings, covers the definition and initialization of plugin
settings and how a generic view partial can be provided to facilitate management of
these settings values. It also discusses how these setting values can be applied within
our plugin's views and controllers.

Chapter 8, Testing Your Plugin, provides an introduction to writing and running
unit, integration, and functional tests that tie into Redmine's infrastructure. It also
provides a brief note on how to integrate a GitHub hosted Redmine plugin with the
Travis CI continuous integration service.

Appendix, Releasing Your Plugin, gives some pointers to plugin authors regarding
what they can do to promote the release of their newly authored plugin. This is
only meant to provide a handful of suggestions and not act as a de facto guide on
plugin publication.

What you need for this book
In order to write plugins for Redmine, a working Ruby/Rails environment should be
available, as well as a copy of Redmine.

Setting up Ruby is platform dependent, but we can get started relatively quickly. For
instructions for Windows, visit http://rubyinstaller.org/. For OSX or Linux,
visit either http://rvm.io/ or https://github.com/sstephenson/rbenv.

Preface

[3]

The Redmine source code can be downloaded at http://www.redmine.org or from
GitHub at https://github.com/redmine/redmine.

If you've never set up Redmine yourself, a comprehensive guide is available at
http://www.redmine.org/projects/redmine/wiki/RedmineInstall.

Who this book is for
The target audience of this book is anyone who has basic to intermediate experience
with Ruby and is comfortable working with Ruby on Rails applications. These are
the basic skills required to get Redmine up and running in a local environment,
which is where most plugin development would be done.

Readers who are interested in writing Redmine plugins and do not possess these
basic development skills are encouraged to investigate further as there are many
excellent resources available online. Some suggestions are as follows:

• http://rubylearning.com/

• https://www.ruby-lang.org/en/documentation/quickstart/

• http://www.codecademy.com/tracks/ruby

• http://tryruby.org

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "Project module permissions are declared
almost identically but are contained within a project_module block."

A block of code is set as follows:

permission :access_global_knowledgebase, {
 :knowledgebase => :index
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

permission :access_global_knowledgebase, {
 :knowledgebase => :index
}

Preface

[4]

Any command-line input or output is written as follows:

permission(name, actions, options = {})

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If we
were to check the roles editor now by navigating to Administration | Roles and
Permissions and select any role to edit, this new permission would in fact appear
under the Project category."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
This book continually references a sample plugin known as the Redmine
Knowledgebase plugin.

This plugin is an actual production plugin that has been available since 2010 but has
been continually refined by the author as well as multiple individual contributors.

Preface

[5]

The source code is MIT licensed and available at https://github.com/alexbevi/
redmine_knowledgebase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website or added
to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to
Redmine Plugins

Redmine is an open source project management platform written in Ruby and built
using the Ruby on Rails framework. It currently supports a lot of key features that
a software project manager would find useful, such as an issue track, wiki, time
tracking, source control management integration, and various other tools that assist
with document and information management.

As the product has gotten more popular, the need to extend the basic functionality
through the use of third-party plugins has grown. Redmine facilitates this through
a plugin API that assists in hooking external model, view, and controller code into
Redmine, as well as integrating with various system features.

This chapter will introduce you to Redmine's plugin structure, as well as how
to generate a new plugin, and some preliminary initialization and configuration
settings. We will generate a sample plugin that we'll be using throughout this book
to illustrate various code samples and topics.

The following topics will be covered in this chapter:

• Basic plugin generation and layout
• A brief overview of the sample plugin that will be referenced throughout

this book
• Overview of the initialization attributes
• Introduction to some helper functions that are available to plugin authors

An introduction to our sample plugin
Throughout this book, we'll be returning to a sample plugin, a knowledgebase,
to provide additional insight into a topic, or to provide code samples. The plugin
we're discussing has actually been developed over a number of years, and has
numerous contributors.

Introduction to Redmine Plugins

[8]

For the purposes of this book and any future examples, our knowledgebase is a
plugin that offers a hybrid solution that lies somewhere between Redmine's wiki and
document functionality.

It allows us to create articles that can be stored within categories. Categories are
stored in a hierarchical fashion, so a category "tree" can be presented to users on the
knowledgebase landing page, as seen in the following screenshot:

Generating a new plugin
Out of the box, Redmine provides a number of generators to facilitate the creation of
plugins and plugin resources.

The Redmine project website provides a plugin tutorial at http://
www.redmine.org/projects/redmine/wiki/Plugin_
Tutorial, which serves as a good starting point to quickly get started.

Running rails generate from the root of our Redmine installation will provide a
list of available generators (truncated in the following snippet to list only those that
are currently relevant):

$ rails generate

RedminePlugin:

 redmine_plugin

Chapter 1

[9]

RedminePluginController:

 redmine_plugin_controller

RedminePluginModel:

 redmine_plugin_model

Downloading the example code
This book continually references a sample plugin known as the
Redmine Knowledgebase plugin.
The source code is available on GitHub at https://github.com/
alexbevi/redmine_knowledgebase and is free to view, modify,
and use.

For more information on these generators, the source is available at /path/to/
redmine/lib/generators. For additional information about Ruby on Rails
generators, see http://guides.rubyonrails.org/generators.html.

In order to create our knowledgebase plugin, we'll first run the redmine_plugin
generator, which creates the bare minimum folder structure and files we'll need to
get started. This is done as follows:

$ rails generate redmine_plugin redmine_knowledgebase

 create plugins/redmine_knowledgebase/app

 create plugins/redmine_knowledgebase/app/controllers

 create plugins/redmine_knowledgebase/app/helpers

 create plugins/redmine_knowledgebase/app/models

 create plugins/redmine_knowledgebase/app/views

 create plugins/redmine_knowledgebase/db/migrate

 create plugins/redmine_knowledgebase/lib/tasks

 create plugins/redmine_knowledgebase/assets/images

 create plugins/redmine_knowledgebase/assets/javascripts

 create plugins/redmine_knowledgebase/assets/stylesheets

 create plugins/redmine_knowledgebase/config/locales

 create plugins/redmine_knowledgebase/test

 create plugins/redmine_knowledgebase/test/fixtures

 create plugins/redmine_knowledgebase/test/unit

 create plugins/redmine_knowledgebase/test/functional

 create plugins/redmine_knowledgebase/test/integration

Introduction to Redmine Plugins

[10]

 create plugins/redmine_knowledgebase/README.rdoc

 create plugins/redmine_knowledgebase/init.rb

 create plugins/redmine_knowledgebase/config/routes.rb

 create plugins/redmine_knowledgebase/config/locales/en.yml

 create plugins/redmine_knowledgebase/test/test_helper.rb

As Redmine's plugin system is inspired by the Rails Engines plugin, they can also
be considered as miniature applications that provide functionality to the host
(Redmine) application.

Additional information regarding the Redmine plugin internals is available at
http://www.redmine.org/projects/redmine/wiki/Plugin_Internals.

When the plugin system was first introduced, Redmine plugins were
effectively Rails Engines, but this is no longer the case (http://www.
redmine.org/issues/10813).

The plugin skeleton that the Redmine plugin generator has produced includes
placeholders for a number of features we'll want to include later, such as tests,
initialization, documentation, MVC, database migrations, and localization.

Using custom gemsets in our plugin
As Redmine is a Ruby on Rails application, all external dependencies are managed
using Bundler. This utility greatly simplifies dependency management, but by default
only allows a single Gemfile to be evaluated when a bundle is being installed.

Although not provided by the default plugin generator, if our plugin will
require external gemsets, we can add a Gemfile to our plugin root, which will be
automatically merged by Redmine whenever Bundler commands are executed or
dependencies are evaluated.

For example, we can create Gemfile in our plugin root directory as follows:

source 'https://rubygems.org'

gem 'redmine_acts_as_taggable_on', '~> 1.0'
gem 'ya2yaml'

When the Bundler installation command is run from the root of our Redmine
installation, our plugin's custom gems will be included and installed:

$ bundle install

Using rake (10.1.1)

Chapter 1

[11]

...

Using redmine_acts_as_taggable_on (1.0.0)

Using rmagick (2.13.2)

Using sqlite3 (1.3.8)

Using ya2yaml (0.31)

Using yard (0.8.7.3)

Your bundle is complete!

Generating models and controllers
The generators introduced previously include variants to generate a plugin's models
and controllers.

One of the primary features of our knowledgebase plugin is the ability to manage
categories. In order to implement this feature, we'll first have to generate the
necessary model, migration, and controller code.

Redmine's plugin model generator parameters are the plugin name, the name of the
model, then a list of attributes, and their data types:

$ rails generate redmine_plugin_model redmine_knowledgebase Category
 title:string description:text

 create plugins/redmine_knowledgebase/app/models/category.rb

 create plugins/redmine_knowledgebase/test/unit/category_test.rb

 create plugins/redmine_knowledgebase/db/migrate
 /001_create_categories.rb

As we've provided some field details in our generator, the generated migration
will be populated accordingly. The same process can be followed to generate the
controller that coincides with our model.

Redmine's plugin controller generator follows the same pattern as the plugin model
generator, but doesn't require field details:

$ rails generate redmine_plugin_controller redmine_knowledgebase
 Category

 create plugins/redmine_knowledgebase/app/controllers/
 category_controller.rb

 create plugins/redmine_knowledgebase/app/helpers/
 category_helper.rb

 create plugins/redmine_knowledgebase/test/functional/
 category_controller_test.rb

Introduction to Redmine Plugins

[12]

Redmine's plugin views cannot be directly generated, but as they follow the standard
Rails layout convention of extending ActionController and ActionView (http://
guides.rubyonrails.org/layouts_and_rendering.html), we can quickly add
view templates and partials to our plugin by placing the necessary files under
/path/to/redmine/plugins/redmine_knowledgebase/app/views.

Some of the naming conventions used by the plugin generators at
the time of writing this book don't match the Ruby on Rails naming
conventions. Database migrations should be prefixed with a timestamp,
not an incremental value, and category_controller would become
categories_controller.

The preceding examples were left intact as they reflect what the actual Redmine
plugin generators produce.

Diving into the initialization file
Every Redmine plugin requires an initialization file (init.rb) to be included in
order for the plugin to be registered with Redmine upon startup.

A stripped down version of the initialization file we'll be working on is included
in the following snippet to highlight some of the attributes and helpers that
are available:

Redmine::Plugin.register :redmine_knowledgebase do
 name 'Knowledgebase'
 author 'Alex Bevilacqua'
 author_url 'http://www.alexbevi.com'
 description 'a knowledgebase plugin for Redmine'
 url 'https://github.com/alexbevi/redmine_knowledgebase'
 version ' 3.0.0'

 requires_redmine :version_or_higher => '2.0.0'

 settings :default => {
 :sort_category_tree => true,
 :show_category_totals => true,
 :summary_limit => 5,
 :disable_article_summaries => false
 }, :partial => 'settings/knowledgebase_settings'

 project_module :knowledgebase do
 permission :view_articles, {

Chapter 1

[13]

 :knowledgebase => :index,
 :articles => [:show, :tagged],
 :categories => [:index, :show]
 }
 permission :create_articles, {
 :knowledgebase => :index,
 :articles => [:show, :tagged, :new, :create, :preview],
 :categories => [:index, :show]
 }
 # ...
 end
end

This plugin registration block contains field definitions that are used to identify the
plugin to Redmine.

As of Redmine 2.3.3, based on the identifier with which the plugin
was registered (:redmine_knowledebase in this case), the plugin
would have to reside in /path/to/redmine/plugins/redmine_
knowledgebase in order to be detected properly. Note that this can be
overridden using a directory attribute in future versions of Redmine, as
per http://www.redmine.org/issues/13927.

Plugin attributes
The values of these fields are used to either identify the plugin to the administrator
when they visit the plugin list at http://localhost:3000/admin/plugins of their
Redmine deployment, or to provide some assignment or initialization functionality.

Ruby on Rails application default to port 3000 when run locally. As this is
standard, we'll be using http://localhost:3000 as the base URL for
all Redmine links.

The attributes that can be provided to the Redmine::Plugin.register block are
as follows:

• name: This is the full name of the plugin.
• description: This gives a brief description of what the plugin does.

Introduction to Redmine Plugins

[14]

• url: This is the website of the plugin itself. This is generally the online
repository URL (GitHub, Bitbucket, Google Code, and so on), or plugin
website (if available or applicable).

• author: This holds the name(s) of the author(s) of the plugin.
• author_url: This is generally the link to either the author(s)' e-mail

addresses or blogs.
• version: This is the internal version number of the plugin. Though not

required, it is a good practice to use Semantic Versioning (see http://
semver.org for more information), as Redmine follows a similar (though not
official) numbering scheme.

• settings: This field is used to define and set the default values of internal
plugin settings and link to a view partial, which system administrators can
use to set plugin configuration values.

settings :default => {
 :sort_category_tree => true,
 }, :partial => 'settings/knowledgebase_settings'

The preceding example lets our plugin know that we will be providing a
configuration partial, as well as initializing a custom settings value of sort_
category_tree to true.

As Redmine plugins follow the standard Ruby on Rails application hierarchy, the
implied location of our settings partial would be /path/to/redmine/plugins/
redmine_knowledgebase/app/views/settings/_knowledgebase_settings.
html.erb.

Settings management will be covered in more detail in Chapter 7, Managing
Plugin Settings.

Initialization checks
Redmine provides a number of helper functions that can be used to assist plugin
authors ensuring compatibility with different versions of Redmine, as well as
other plugins.

Checking for a specific Redmine version
The version or versions of Redmine that a plugin is compatible with can be specified
within the plugin initialization file using the requires_redmine helper.

Chapter 1

[15]

This helper allows the plugin author to alert Redmine system administrators that
the plugin is not intended to run with the administrator's version of Redmine. Some
examples of the types of version checks that can be performed are as follows:

• Exact match
requires_redmine "2.3.3"
requires_redmine :version => "2.3.3"

• Exact match of more than one version
requires_redmine :version => ["2.2.0", "2.3.0"]

• Match a specific version and revision
requires_redmine "2.3"
requires_redmine :version => "2.3"

• Minimum version or higher
requires_redmine :version_or_higher => "2.3.3"

• Range of versions
requires_redmine :version => "2.2.0".."2.3.0"
requires_redmine :version => "2.2".."2.3"

Ensuring the existence of other plugins
Similar to the requires_redmine helper, the requires_redmine_plugin function
is used to limit the successful deployment of our plugin based on the availability of
another Redmine plugin.

The following examples are based on a plugin named :sample_plugin being
included for availability and version checks:

• Exact match
requires_redmine_plugin :sample_plugin :version => "1.0.0"
requires_redmine_plugin :sample_plugin "1.0.0"

• Minimum version or higher
requires_redmine_plugin :sample_plugin :version_or_higher =>
"1.0.0"

• Range of versions
requires_redmine_plugin :sample_plugin :version => ["0.1.0",
"0.2.0"]

Introduction to Redmine Plugins

[16]

Extending core Redmine features
Now that we've initialized our plugin with some basic details and requirements, we
can start integrating directly with Redmine.

A number of helper methods are available to plugin authors, which facilitate this
integration with core components, such as menus and permissions.

Working with Redmine menus
The menu helper, which is also aliased to add_menu_item, allows us to inject custom
entries into various content areas of Redmine. The syntax for adding a menu item is:

menu(menu, item, url, options = {})

The options hash can accept any number of the following parameters:

• :param: This is the parameter key that will be used as the project ID (the
default is :id).

• :if: This is a proc that prevents the menu from rendering unless it is
evaluated to true.

• :caption: This is the menu caption (label), which can be a localized symbol,
proc, or string.

• :before or :after: This is used to position the menu entry relative to
an existing entry. For example, :after => :activity, or :before =>
:issues.

• :first or :last: If either of these options is set to true, the menu item will
be placed at the absolute beginning or end of the target menu.

• :html: This is a hash of HTML options that will be passed to the link_to
instance that is used to render the menu item.

Redmine also provides a function we can use in our plugin to remove menu items,
the syntax for which is:

delete_menu_item(menu, item)

The following example injects an entry into the project menu. Note that although
you've added a new menu item, it may still not be available to all users due to
insufficient permissions.

menu :project_menu,
 :articles,
 { :controller => 'articles', :action => 'index' },
 :caption => :knowledgebase_title,

Chapter 1

[17]

 :after => :activity,
 :param => :project_id

The other valid targets for the menu are admin_menu, top_menu, account_menu, and
application_menu.

The admin_menu target is used to add custom entries to the Administration menu,
which is available at http://localhost:3000/admin, and can insert custom entries
between the Settings and Plugins menu items.

Initializing named permissions
The permission helper is used to define a named permission for the given actions.
The syntax for this helper is:

permission(name, actions, options = {})

The actions argument is a hash with controllers as keys and actions as values (a
single value or an array):

 permission :destroy_contacts, { :contacts => :destroy }
 permission :view_contacts, { :contacts => [:index, :show] }

The valid options are as follows:

• :public: This changes the permission to public if set to true (implicitly
given to any user)

• :require: This can be set to either :loggedin or :member, and is used to
further restrict the types of users the permission can be applied to

• :read: This is set to true so that the permission is still granted on
closed projects

Permissions will be covered in more detail in Chapter 3, Permissions and Security.

Introduction to Redmine Plugins

[18]

Project module availability
If our plugin will be adding functionality at the project level (as opposed to globally)
within Redmine, we'll need to define a project_module block.

A project module is effectively a functional area within Redmine whose data belongs
to a specific project, or whose scope can be limited to a project. Examples of project
modules are issues, documents, wikis, or time tracking features.

Permissions defined within the project_module block will be bound to the module,
as follows:

project_module :knowledgebase do
 permission :view_articles, {
 :knowledgebase => :index,
 :articles => [:show, :tagged],
 :categories => [:index, :show]
 }
 permission :comment_and_rate_articles, {
 :knowledgebase => :index,
 :articles => [:show, :tagged, :rate, :comment, :add_comment],
 :categories => [:index, :show]
 }
 # ...
end

Chapter 1

[19]

Adding custom events to the activity stream
Activity providers are essentially models that have been defined to provide events to
the activity fetcher. Once a model has registered an activity provider, activities will
be mixed into a project's activity stream.

A model can provide several activity event types, which are registered by passing
event types and optional class names to the activity_provider helper plugin:

 activity_provider :news
 activity_provider :scrums, :class_name => 'Meeting'
 activity_provider :issues, :class_name => ['Issue', 'Journal']

Using the activity_provider helper simply indicates that there are activity
providers registered. The syntax for the helper functions is:

activity_provider(*args)

The helper simply wraps Redmine::Activity.register, which is available at /
path/to/redmine/lib/redmine/activity.rb.

A matching acts_as_activity_provider entity must be initialized at the model
level in order to actually utilize this functionality.

We will cover activity provider configuration in more detail in Chapter 6, Interacting
with the Activity Stream.

Registering custom text formatting macros
Our knowledgebase plugin will be used to create articles, which we may want to
reference in other Redmine content areas.

For example, if we want to register the kb#1 macro to link to a knowledgebase
article with an ID value of 1, we would first need to register the macro with a
Redmine::WikiFormatting::Macros.register block similar to the following:

Redmine::WikiFormatting::Macros.register do
 desc "Knowledge base Article link Macro, using the kb# format"
 macro :kb do |obj, args|
 args, options = extract_macro_options(args, :parent)
 raise 'One argument expected' if args.size != 1
 article = KbArticle.find(args.first)
 link_to_article(article)
 end
end

Introduction to Redmine Plugins

[20]

We could now include the text kb#1 in an issue, document, wiki, or anywhere else
where Redmine formats text (see http://www.redmine.org/projects/redmine/
wiki/RedmineTextFormatting for existing formatting options) and it would render
as a link back to our knowledgebase article.

Summary
We now have a better understanding of what options are available to us when
setting up a plugin for use with Redmine.

In this chapter, we covered the various plugin attributes that can be used to identify
the plugin to Redmine. We also introduced some helper methods, which we'll be
returning to throughout the book when we cover elements such as permissions,
activity streams, and configuration in more detail.

In the next chapter, we will extend our knowledgebase plugin through the use of
view hooks.

Extending Redmine
Using Hooks

Redmine, at its core, is a project management and issue tracking system. Its
developers have invested a lot of time and energy into building an extremely robust
solution that rivals even proprietary competitors, but we occasionally find ourselves
wishing we could perform a certain task or see a piece of information differently.

Thankfully, Redmine was designed with extensibility in mind. Not only is there a
plugin system in place to allow custom functionality to be implemented, but core
features can be extended using a system of hooks and callbacks.

In this chapter, we will dive into the various classifications of hooks and how our
plugin can leverage them to add new functionality to existing Redmine systems
and components.

We will cover the following topics in this chapter:

• An introduction to what a hook is
• What types of hooks exist and where they can be used
• An example view hook implementation

Understanding hooks
A hook is essentially just a listener for which we've registered a callback function.
These callback functions expect a single parameter: a hash that provides some
context to the function. The contents of the hash depend on what type of hook is
being evaluated.

Extending Redmine Using Hooks

[22]

There are four basic categories of hooks available in Redmine:

• View hooks
• Controller hooks
• Model hooks
• Helper hooks

For view and controller hooks, the context hash contains the following fields as well
as data specific to the hook being used:

• :project: This is the current project
• :request: This contains the current web request instance
• :controller: This contains the current controller instance
• :hook_caller: This holds the object that called the hook

The full list of available hooks is maintained at http://www.redmine.
org/projects/redmine/wiki/Hooks_List.

To quickly build the hook list for the version of Redmine you have installed, run the
following commands:

cd /path/to/redmine/app

grep -r call_hook *

By doing this from the app directory, we prune out any results from the hook class
definition or any of the test files.

Redmine has many hooks registered throughout the codebase by means of the call_
hook method, whose syntax is as follows:

call_hook(hook, context={})

For example, the partial /path/to/redmine/app/views/issues/_form.html.erb
contains the following hook declaration:

<%= call_hook(:view_issues_form_details_bottom, { :issue =>
 @issue, :form => f }) %>

View hooks
The primary use of hooks in Redmine is to inject functionality into an existing view.

A view hook is executed while the HTML code of a view is being rendered.

Chapter 2

[23]

View hooks are likely to be the most frequently used type of hook by plugin authors.
Through these hooks, we can add functionality from our plugins to existing Redmine
views and partials.

As an example, let's add the ability to associate knowledgebase articles with an issue.
We'll implement this in a similar fashion to how issues can be associated with
each other.

In order to display this association, we will extend the relevant issue views using
view hooks. To accomplish this, the first step is to create a class that extends
Redmine::Hook::ViewListener:

module RedmineKnowledgebase
 class Hooks < Redmine::Hook::ViewListener
 render_on :view_issues_show_description_bottom,
 :partial => 'redmine_knowledgebase/hooks/view_issues_
show_description_bottom'
 end
end

This file will be saved to our plugin's lib folder as /path/to/redmine/plugins/
redmine_knowledgebase/lib/hooks.rb.

To include the custom hook in our plugin, the hooks.rb file will simply need to be
added to the plugin's init.rb file as a requirement.

The preceding hook implementation is done using the render_on helper method,
which facilitates rendering a partial using the context.

In the following sample, we'll accomplish the same result by defining the callback
method ourselves and manually configuring the context object:

module RedmineKnowledgebase
 class Hooks < Redmine::Hook::ViewListener
 def view_issues_show_description_bottom(context = {})
 # the controller parameter is part of the current params object
 # This will render the partial into a string and return it.
 context[:controller].send(:render_to_string, {
 :partial => " redmine_knowledgebase/hooks/view_issues_show_
description_bottom",
 :locals => context
 })

 # Instead of the above statement, you could return any string
generated

Extending Redmine Using Hooks

[24]

 # by your code. That string will be included into the view
 end
 end
end

When this hook is called and a callback has been registered, it will yield raw HTML
code that will be inserted in the following issue form details:

In our example, we've added an Articles section to the issues of the current project.
Note that the actual implementation code for this is not covered as it goes a bit out of
the scope of this book.

Controller hooks
Controller hooks allow custom functionality to be injected into an existing process.
A normal use-case for this type of hook is to perform some custom validation on the
context object provided to the callback.

In /path/to/redmine/app/models/issue.rb, there is a hook registered for
controller_issues_edit_before_save. In order to take advantage of this hook,
we would have to provide our own callback function. This can be done as follows:

module Knowledgebase
 module Hooks
 class ControllerIssuesEditBeforeSaveHook
 < Redmine::Hook::ViewListener
 def controller_issues_edit_before_save(context={})
 if context[:params] && context[:params][:issue]
 if User.current.allowed_to?(:assign_article_to_issue,
 context[:issue].project)
 if context[:params][:issue][:article_id].present?
 article = KbArticle.find_by_id(context[:params]
 [:issue][:article_id])

Chapter 2

[25]

 if article.category.project ==
 context[:issue].project
 context[:issue].article = article
 end
 else
 context[:issue].article = nil
 end
 end
 end
 return ''
 end
 end
 end
end

Once registered, this hook will check to see whether the current user has permission
to attach a knowledgebase article to an issue before saving the issue.

Model hooks
These hooks are used even less frequently than controller hooks but are being
included here for completeness.

Model extension is better handled through the use of new methods or encapsulation
of existing methods by means of the alias_method_chain pattern. For a summary
of alias_method_chain see http://stackoverflow.com/a/3697391.

A common use-case for model hooks is the :model_project_copy_before_save
hook as this can be used to replicate content from our plugin that belonged to a
specific project if that project is copied:

module RedmineKnowledgebase
 class Hooks < Redmine::Hook::ViewListener
 def model_project_copy_before_save(context = {})
 source = context[:source_project]
 destination = context[:destination_project]

 if source.module_enabled?(:redmine_knowledgebase)
 # TODO: clone all categories
 # TODO: clone all articles
 # TODO: ensure cloned articles refer to cloned categories
 end
 end
 end
end

Extending Redmine Using Hooks

[26]

The actual implementation has been left out in the preceding snippet, but
placeholders have been left intact to illustrate what actions we could be taking.

Helper hooks
According to the official Redmine hooks list, there is only a single helper hook
currently available (http://www.redmine.org/projects/redmine/wiki/Hooks_
List#Helper-hooks). The :helper_issues_show_details_after_setting hook
is called when journal details are being rendered in an issue and can be used to
override the label and value that is passed to the journal entry.

A sample view hook implementation
We will be glossing over a lot of implementation details as they are out of the
scope for this book, but the full code will be available on the GitHub repository at
https://github.com/alexbevi/redmine_knowledgebase.

Identifying the callback
We've determined that our plugin will be hooking into the existing issue tracking
system in order to allow users to attach knowledgebase articles.

The desired functionality is the same as the Subtasks functionality that already
exists, so we will model our hook after that.

Our first step is to determine which hook best suits our needs. In order to add
additional functionality to the existing issues#show view, we will choose the
:view_issues_show_description_bottom hook as it allows us to insert a partial
just below the standard issue details form, as indicated in the following screenshot:

With the desired view hook identified, we need to define a listener class and tie that
into our plugin initialization code.

Chapter 2

[27]

Integrating the hook
The necessary code to define our new listener will be placed in lib/redmine_
knowledgebase/hooks.rb and will be defined as follows:

module RedmineKnowledgebase
 class Hooks < Redmine::Hook::ViewListener
 render_on :view_issues_show_description_bottom,
 :partial => 'redmine_knowledgebase/hooks/view_issues_
show_description_bottom'
 end
end

In order to include this new class in our plugin, it just needs to be required in our
init.rb file:

require_dependency 'redmine_knowledgebase/hooks'

Note that if we want the contents of our included classes and modules to be reloaded
during development or to keep them from potentially overwriting content defined
by other plugins, we should encapsulate them in a Rails.configuration.to_
prepare block.

See http://guides.rubyonrails.org/configuring.html#configuring-action-
dispatch for more information.

Creating the view partial
As referenced in our hooks.rb file, the callback for our hook is actually a
view partial.

This partial will be created at app/views/redmine_knowledgebase/hooks/_view_
issues_show_description_bottom.html.erb and can be defined as follows:

<% if @project.module_enabled?(:knowledgebase) %>

<div class="contextual">
<% if User.current.allowed_to?(:manage_issue_articles, @project) %>
 <%= toggle_link l(:button_add), 'new-article-form', { :focus =>
 'article_issue_to_id' } %>
<% end %>
</div>

<p><%=l(:label_article_plural)%></p>

<%= form_for @article, {
 :as => :article, :remote => true,
 :url => issue_articles_path(@issue),

Extending Redmine Using Hooks

[28]

 :method => :post,
 :html => {:id => 'new-article-form', :style => (@article ? '' :
 'display: none;')}
} do |f| %>
<%= render :partial => 'hook/issue_articles/form', :locals => {:f =>
f} %>
<% end %>

<% end %>

The preceding partial has been stripped down to show the bare minimum, that is,
a reduced view with an Add button that reveals a search form on being clicked, as
seen in the following screenshot:

Please note a couple of things about the preceding code:

• @project.module_enabled?(:knowledgebase) is used to check whether
the project module provided by our plugin, as we've defined in the plugin's
init.rb file, has been toggled in the project settings. If it is disabled, we just
hide everything (the search form and any associated articles).

• User.current.allowed_to?(:manage_issue_articles, @project)
references a project module permission we've defined in our init.rb.

Summary
There are a number of different types of hooks available within Redmine, but the
odds are that most use-cases we'll encounter will call for view hooks.

In this chapter, we were introduced to the various types of hooks Redmine provides
as well as some sample implementations of each. We also implemented a basic view
hook, from which we gained a better understanding of the hook implementation and
integration process.

In the next chapter, we will cover the permission registration process in detail and
will discuss how plugin permissions are administered and enforced.

Permissions and Security
Our knowledgebase plugin adds extra content to Redmine projects in the form of
categories and articles. These new content areas may contain sensitive information,
which we would want to restrict certain users from accessing.

As there are different levels of users in Redmine for issue reporting and
management, it is only natural that we would want to restrict access to the content in
our knowledgebase plugin in a similar fashion.

This chapter will introduce the Redmine permission system and tells us how we can
take advantage of it to restrict access to content areas within our plugin.

We will cover the following topics in this chapter:

• Summarizing Redmine's permissions system
• Declaring custom permissions
• Ensuring access restrictions in models, views, and controllers
• Understanding custom content access control

Summarizing Redmine's permission
system
As we'll be extending Redmine's access control layer with our own custom
permissions, our first course of action should be to better understand this system.

Redmine doesn't apply permissions directly to users; instead, it encapsulates
permissions within roles. These roles in turn can have one to many users associated
with them and are used to control access to content areas within projects, modules,
and plugins.

Permissions and Security

[30]

The following screenshot shows the Administration | Roles and permissions view
where new roles can be created, or existing roles can be modified:

Each role contains a subset of the available permissions, which are further grouped
by project module, which can be toggled on or off. The following screenshot shows
the Manager role that is available as a default in Redmine along with the available
Project Permissions all toggled:

As Redmine is a project-oriented system, a project association must be made in
order for the role to be applied. This is done by a project administrator or any user
assigned to a role with the :manage_members permission in Settings | Members for
the project window.

Chapter 3

[31]

Permissions can be applied directly to users via roles, or they can be applied to
groups of users. Groups are configured by a Redmine system administrator by
navigating to Administration | Groups.

Declaring custom permissions
As we saw briefly in Chapter 1, Introduction to Redmine Plugins, permissions
are registered in our plugin's init.rb file as part of the Redmine::Plugin.register
block.

While registering a new permission, we populate a hash, which takes a controller as
key, and an array of actions as the value. The syntax for this command is as follows:

permission(name, actions, options = {})

The permission helper that is available to us (plugin authors) is actually just a
wrapper around Redmine::AccessControl#map, which is located in /path/to/
redmine/lib/redmine/access_control.rb.

Before registering our permissions, we need to understand the two scopes of
permissions that are available: global and project module.

Global permissions are a bit deceptive as they aren't actually "global" in nature. In
fact, they belong to the Project category and are essentially just a sum of a user's
permissions across all projects for which they are members.

Note that global permissions can mean different things depending on what context
they're being used in:

• Permissions that are not tied to (defined within) a project module (definition)
• Permissions a user has for at least one project within the entire Redmine

system (used for several cross-project features)

Permissions and Security

[32]

In order to demonstrate, let's register the following permission:

permission :access_global_knowledgebase, {
 :knowledgebase => :index
}

If we were to check the roles editor now by navigating to Administration | Roles
and Permissions and selecting any role to edit, this new permission would in fact
appear under the Project category.

Note that for a user to be able to take advantage of this permission, they would still
need to be a member of a project. If a user should only have access to this feature,
but not additional projects, a new project should be created that all users can be a
member of.

Project module permissions are declared almost identically, but are contained within
a project_module block.

project_module :knowledgebase do
permission :view_kb_articles, {
 :articles => [:index, :show, :tagged],
 :categories => [:index, :show]
}
end

This block allows the permissions to be encapsulated and is therefore dependent on
the project module being enabled in a project's module list before the permissions are
applicable.

The previous example allows any user with the :view_kb_articles
permission applied to be able to access the articles#index, articles#show,
articles#tagged, categories#index, and categories#show routes.

As permissions target a controller action, we cannot provide
more granular access control—for example, restricting access to
individual articles—using the built-in permissions system.

Chapter 3

[33]

Editing any role will now contain a new group for the project module
:knowledgebase with the single permission we've defined.

Ensuring access restrictions in models,
views, and controllers
Now that we know how to declare and apply permissions for our plugin, we need to
ensure that those permissions are honored in the context we intended.

Checking if the current user has the permission to perform a specific action is done
using the allowed_to? function of the User model, the syntax for which is as
follows:

allowed_to?(action, context, options={}, &block)

Permissions and Security

[34]

The action parameter of this method can either take a parameter Hash (such as
:controller => "project", :action => "edit") or a permission Symbol (for
example :edit_project).

There is also a User model method, allowed_to_globally?, that uses the same
syntax, which is used to check for global permissions.

Note that, as model methods, neither allowed_to? nor allowed_to_globally? are
used to actually restrict access to content areas based on defined permissions but
are used to test a user instance to see if they have the permission to a content area.
For example, in our plugin, we have a permission defined that allows users to add
comments to existing knowledgebase articles.

If we check the init.rb file, we find the permission declaration as follows:

permission :comment_and_rate_articles, {
 :articles => [:index, :show, :tagged, :rate,
 :comment, :add_comment],
 :categories => [:index, :show]
}

Comments are added via a modal dialog, which is shown when the user clicks on the
New Comment link, which we only want to make available to authenticated users
who have the permission we mentioned enabled.

In our view, we would add a check for this permission against the current user and
current project, as follows:

<% if User.current.allowed_to?(:comment_and_rate_articles,
 @project) %>
 <%= link_to l(:label_new_comment), { :controller => "articles",
 :action => "comment", :article_id => @article, :project_id
 => @project },}, :remote => true, :method => :get %>
<% end %>

To actually restrict access based on the permissions we've defined for our plugin,
we need to employ the authorize or authorize_global methods provided by
Redmine in ApplicationController.

Chapter 3

[35]

The most common implementation is to add a before_filter action callback to our
controller that calls the authorize method. This method assumes that an instance
variable named @project exists and is valid; therefore, before calling authorize
we should call either the find_project or find_project_by_project_id method
(both provided by ApplicationController and to be used depending on how
we've set up our plugin's routing in routes.rb).

class ArticlesController < ApplicationController
 # ...

 before_filter :find_project_by_project_id, :authorize

 # ...
end

One of the most common uses for this type of permission check is to toggle the
visibility of links. In these cases, Redmine offers a more succinct helper function,
which we can use to simplify the example provided earlier by using the link_to_
if_authorized method, as follows:

<%= link_to_if_authorized l(:label_new_comment), { :controller =>
"articles", :action => "comment", :article_id => @article, :project_id
=> @project }, :remote => true, :method => :get %>

The link_to_if_authorized view helper method is part of Redmine's
ApplicationHelper module and is simply a convenience function that calls
the standard Rails link_to method (for more information, visit http://api.
rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html#method-i-
link_to) if the current user is authorized to access the link target's controller action.

The authorize_for view helper method is itself just a wrapper around the
User#allowed_to? method. The syntax is provided as follows for reference:

def authorize_for(controller, action)
 User.current.allowed_to?({:controller => controller,
 :action => action}, @project)
End

Unlike the allowed_to? and allowed_to_globally? model methods, or the
authorize and authorize_global controller methods, the link_to_if_
authorized and authorize_for helper methods should be used within the context
of a view or partial.

Permissions and Security

[36]

Understanding custom content access
control
The Redmine access control layer is modeled around controlling access to RESTful
routes. Although this approach allows us to manage access to content areas, it falls
short when it comes to actually locking down access to content itself.

The case study we're going to explore adds an additional layer of security to our
knowledgebase plugin by restricting access to specific categories as well as the
articles contained within those categories.

The first step we need to take is to decide how we're going to add our
new permission. Ruby on Rails applications are very easy to extend using
Rubygems (visit http://rubygems.org), and there are a number of access control
gems available on GitHub that allow for some extremely complex permissions and
access management schemes.

Instead of adding a new dependency to Redmine via an external library, since our
needs are relatively simple, we're just going to extend our category model with a
user whitelist.

The goals of this whitelist are to:

• Allow administrative users with the proper permissions the ability to
manage whitelist membership

• Ensure content is not visible to members who are not explicitly added to
a whitelist

• Ignore whitelists if no members have been added

The plugin that we're extending is hosted at https://github.com/alexbevi/
redmine_knowledgebase, and any references to the models, views, or controllers are
assumed to be derived from the code of the 3.0 developer and 3.0 final Versions.

As we're extending an existing model, we'll add a migration in the standard Ruby
on Rails fashion and put the new file in our plugin's db/migrate directory. All our
migration will do is add a new column to the category model.

class AddUserWhitelistToCategories < ActiveRecord::Migration
 def change
 add_column :kb_categories, :user_whitelist, :string,
 :default => ""
 end
end

Chapter 3

[37]

For a refresher on Ruby on Rails migrations, visit http://guides.
rubyonrails.org/migrations.html.

In order to actually apply the change, we need to rerun the Redmine plugin
migration Rake task from the root of the Redmine deployment directory.

$ rake redmine:plugins:migrate

Migrating redmine_knowledgebase (Knowledgebase)...

== AddUserWhitelistToCategories: migrating =============================
======

-- add_column(:kb_categories, :user_whitelist, :string, {:default=>""})

 -> 0.0011s

== AddUserWhitelistToCategories: migrated (0.0013s)
==========================

Managing user whitelists
The new field we added to our category model will take a comma-separated string of
user IDs that represents users we are explicitly granting access to.

Before we can start adding any users, we need to ensure that access to this
functionality is properly restricted. We'll begin by adding a new permission to our
plugin's init.rb file.

permission :manage_category_whitelist, {
 :articles => :index,
 :categories => [:index, :show, :edit, :update]
}

Using this new permission, the form partial that is used to create and edit new
categories will be extended to check whether the current user has the appropriate
permission to manage user whitelists.

<% if User.current.allowed_to?(:manage_category_whitelist
 , @project) %>
 <%= render :partial => "categories/members" %>
<% end %>

The contents of the_members.html.erb partial referenced in the preceding
code is included here as well, in order to provide a more complete picture of the
implementation:

<% whitelisted = @category.user_whitelist.split(",") %>
<p>

Permissions and Security

[38]

 <label><%= l(:label_user_whitelist) %></label>
<% @project.users.sort.each do |user| %>
 <%= check_box_tag 'user_whitelist[]', user.id, whitelisted.
include?(user.id.to_s) %> <%= h user %>

<% end %>
</p>

As the following screenshot illustrates, the users who have been explicitly granted
access to the project our knowledgebase plugin is enabled on are presented in a
checkbox list under a User whitelist section:

Our category creation and update view now contains a section for whitelist
management based on the associated project's user list, as can be seen in the
previous screenshot.

In order to actually save the changes when Update is clicked, the update method of
the CategoriesController needs to be adjusted slightly.

After the category is loaded, but before the attributes are updated, we'll just inject a
quick assignment of the submitted data.

@category.user_whitelist = if params["user_whitelist"].blank?
 ""
else
 params["user_whitelist"].join(",")
end

Restricting access via whitelists
Now that administrators have the ability to add and update category whitelists, we
need to update our views in order to disable access to specific content.

The choice to implement a whitelist (as opposed to a blacklist) is to ensure that the
default behavior would reflect the standard permissive nature the plugin had before
we implemented this change.

Chapter 3

[39]

Since the default access logic is to allow all unless a whitelist is explicitly defined,
we're going to add a blacklisted? method to our category model to help us
determine whether a user should be allowed to view the category and its contents.

def blacklisted?(user)
 return false if self.user_whitelist.blank?

 whitelisted = self.user_whitelist.split(",").include?
 (user.id.to_s)
 !whitelisted
end

Since our categories are configured as nested sets, we'll need to check our whitelists
when fetching the root nodes as well as the subsequent children.

In both cases, the code would be modified in a similar fashion.

@categories = @project.categories.where(:parent_id
 => nil).delete_if { |cat| cat.blacklisted?(User.current) }

The delete_if method is added to the standard category lookup above in order to
prune out any content the user doesn't have access to.

Enforcing the whitelist
The content we removed in the previous section only limits non-whitelisted users
from seeing the restricted content.

If they were to navigate directly to the URL of a page they weren't supposed
to see, that content would still be displayed as there is no logic to prevent them
from accessing it.

To prevent unauthorized access to a category, we need to modify the show method of
the CategoriesController in order to check whether a user is blacklisted before the
page is rendered.

if @category.blacklisted?(User.current)
 render_403
 return false
end

This can also be enforced by moving the necessary functionality to a
separate method and then calling that from before_filter.

Permissions and Security

[40]

If a user tries to access a category they have been denied access to, they will now be
presented with a standard access denied message.

The same logic should be applied to the articles contained within categories. If a user
tries to access an article directly but the category the article belongs to has a whitelist,
the user should be redirected away from the restricted content.

This is accomplished almost identically to how CategoriesController was
modified, but in this case, we'll update the show method of ArticlesController.

if @article.category.blacklisted?(User.current)
 render_403
 return false
end

The example that is provided here is meant to illustrate how a basic content-specific
access control layer can be implemented using as much of Redmine's internals as
possible.

If this method is going to be used in production systems where sensitive information
needs to be protected in a more granular fashion, a couple of deficiencies need to be
listed as they were glossed over:

• This example does not validate siblings or parents in the hierarchy
when rendering the category tree

• This example doesn't limit Redmine search results based on
whitelist membership

Chapter 3

[41]

Summary
Restricting access to various content areas and limiting what users can do with
existing content are the primary functions of Redmine's permission system.

In this chapter, we learned how Redmine manages permissions, how we can add
our own controllers and actions to a permissions list, and how to enforce these
permissions in our views.

We also explored a case study and provided a whitelist approach to restricting
content in a more granular fashion than Redmine provides in its core libraries.

In the next chapter, we'll be adding file attachments to our plugin's models.

Attaching Files to Models
One very common extension we end up having to implement in our models, be it
in Redmine or in another project, is the ability to attach files. As we're working on
a knowledgebase plugin, our articles could be made more informative by allowing
external files to be attached as reference items.

If we were writing our own Ruby on Rails application, the process of adding file
attachment capabilities is generally delegated to an external library or gem such
as paperclip (https://github.com/thoughtbot/paperclip) or carrierwave
(https://github.com/carrierwaveuploader/carrierwave).

Redmine has conveniently abstracted this all away for us, which makes adding file
upload and attachment features almost no work at all.

We will cover the following topics in this chapter:

• How our models are updated with the internal acts_as_attachable plugin
• How to implement the existing file attachment view partial and what options

it takes
• Using the link_to_attachments view helper
• How to manage attachment permissions and how to further restrict the

deletion of attachments

Model preparation
Redmine has implemented a number of internal plugins, which are located under
/path/to/redmine/lib/plugins.

These plugins follow the traditional Rails naming idiom of acts_as_* (for more
information on this topic, visit http://guides.rubyonrails.org/plugins.
html#add-an-acts-as-method-to-active-record), which implies that we'll be
including a class level method, which is named the same as the plugin.

Attaching Files to Models

[44]

The class we'll be extending is the model that our knowledgebase plugin uses to
manage articles.

class KbArticle < ActiveRecord::Base
 validates :title, :presence => true
 validates :category_id, :presence => true

 belongs_to :project
 belongs_to :category, :class_name => "KbCategory"
 belongs_to :author, :class_name => 'User',
 :foreign_key => 'author_id'

 # class method from Redmine::Acts::Attachable::ClassMethods
 acts_as_attachable

 # class definition continues ...
End

By including acts_as_attachable in our class, a has-many association is established
and a number of instance methods are automatically injected into the class. These
methods are used by the view helpers in order to validate and save attachments.

A couple of handy helper functions provided by acts_as_attachable are:

• attachments_visible?(user=User.current)

• attachments_deletable?(user=User.current)

Both methods check whether a Redmine user has the permission to perform a certain
action on an attachment that has been added to an associated model.

These permissions are covered in detail in the Managing attachment permissions
section later in this chapter.

The default permissions are formed by joining a prefix with a pluralized and
underscored representation of the model's name that acts_as_attachable is being
added to. For example, our article model would have :view_kb_article and
:edit_kb_article by default.

Note that our model must respond to self.project either by having a
project association (belongs_to) or by means of an instance method. This is
due to the attachments_visible? and attachments_deleteable? methods
using the User#allowed_to? method to validate access and interaction with a
model's attachments.

Chapter 4

[45]

Enabling attachments in our views
Adding multiple file attachment capabilities to our article creation and update
form is also simple and straightforward. To make our implementation even
easier, Redmine already has a styled and structured sample available in the issue
management code that we can reuse.

The following code snippet needs to be copied and pasted into the form (or form
partial) that we're using to create and edit articles. Assuming we're using the
standard Rails method of building forms using FormBuilder (visit http://api.
rubyonrails.org/classes/ActionView/Helpers/FormBuilder.html), the
following code would need to be inserted within a view's form_for block:

<div class="box">
 <p>
 <label><%=l(:label_attachment_plural)%></label>
 <%= render :partial => 'attachments/form' %>
 </p>
</div>

This incorporates the stock Redmine view partial that allows files to be uploaded
asynchronously and attached to our model.

The preceding partial adds an additional form field array called attachments, which
takes attachments via file_field_tag. Multiple files can be attached at once as the
partial we're using dynamically adds each file to the form (see /path/to/redmine/
app/views/attachments/_form.html.erb for the full implementation).

Attaching Files to Models

[46]

The attached files can also be deleted and have optional descriptions provided.

Note that the Maximum size value is based on the value provided at
Administration | Settings under the General tab in the Maximum
attachment size field.

Controller modifications to accommodate
attachments
Since we're using the standard Redmine view partials to manage our attachments,
when a new article is created or updated, attachments are submitted to our controller
in an attachments collection, which is available from params[:attachments]:

"attachments"=>
{"1"=>
 {"filename"=>"8748OS_04_01.png",
 "description"=>"",
 "token"=>"4.f5bd5eabd62c9ec71b427d8195f18285"},
 "2"=>
 {"filename"=>"8748OS_04_02.png",
 "description"=>"",
 "token"=>"5.f8bd02cfcb83aba081bf69ac06fdb085"},
 "3"=>
 {"filename"=>"8748OS_04_03.png",
 "description"=>"",
 "token"=>"6.80b7dd688925171341b4004fc9ddcf69"}}

The actual file uploads are handled asynchronously by Redmine before we even
submit the form, but we still have to associate these files with our model.

One of the instance methods that acts_as_attachable provides our models with
is save_attachments. This can be used in our controller to complete the upload
process by associating the uploaded files with our model.

The following example is a modified update method for our ArticlesController
that incorporates this new functionality:

def update
 @article = KbArticle.find(params[:id])
 # ...
 if @article.update_attributes(params[:article])
 @article.save_attachments(params[:attachments])
 render_attachment_warning_if_needed(@article)

Chapter 4

[47]

 # ...
 redirect_to { :action => 'show', :id => @article.id,
 :project_id => @project }
 end
end

We have included a call to render_attachment_warning_if_needed(obj) in the
previous example as a convenience. This method is not part of acts_as_attachable
but can be added to any plugin's controller as it is a method of Redmine's
ApplicationController. It adds a warning to the Rails Flash (visit http://api.
rubyonrails.org/classes/ActionDispatch/Flash.html) if any attachments
remain unsaved.

Listing and managing attachments
Redmine provides a view partial for listing the existing attachments on a model as
well. In order to quickly implement this functionality, the /path/to/redmine/app/
views/attachments/_links.html.erb partial can be plugged into any view and
passed a collection of attachments as follows:

<%= render :partial => 'attachments/links',
 :locals => { :attachments => @article.attachments,
 :options => { :deletable => User.current.logged? }
 } %>

This will change the view as shown in the following screenshot:

In addition to the attachments collection that is required, the links partial also
accepts an options hash. This hash only accepts the following keys:

• :author: If the value evaluates to true, the attachment author is listed along
with the timestamp of when the attachment was created

Attaching Files to Models

[48]

• :deletable: If the value evaluates to true, a delete link will be rendered,
which allows the current user the ability to permanently remove the
attachment

• :thumbnails: When this option is provided and evaluates to true,
attachment thumbnails will be displayed if enabled by the system
administrator (Administration | Settings | Display | Display attachment
thumbnails)

The :deleteable option is an all-or-nothing option for the entire attachment
collection that is passed to the partial view. As such, if we're looking to implement a
more granular security setup, we could render the attachments/links partial more
than once with filtered collections.

<% @article.attachments.group_by { |f| File.extname(f.filename).
include?("exe") }.each do |group| %>
 <%= render :partial => 'attachments/links',
 :locals => { :attachments => group[1],
 :options => { :deletable => User.current.logged? && group[0] }
} %>
<% end %>

This example will group the attachments collection based on whether or not the
filename includes the .exe extension, and if it does, will allow deletion.

As the grouping approach leaves a visible separation between groups, another
option would be to clone the partial provided in the Redmine source and extend it
according to our specific criteria.

For a quicker implementation of the attachments/links partial, Redmine provides
a method in AttachmentsHelper:

link_to_attachments(container, options = {})

This view helper method checks the container (model instance) for any attachments,
and renders the attachments/links partial if any exist.

Chapter 4

[49]

The helper method here takes a container that has attachments associated with it.
In this case, we would pass our @article instance, not the attachments
collections directly.

The implementation we just described using the attachment/links partial directly
could now be shortened to something along the lines of this:

<%= link_to_attachments @article,
 :thumbnails => true,
 :author => true %>

This example omits the :deletable option but provides a couple of
additional options.

When :thumbnails is provided, if an attachment is an image (see the image? method
in /path/to/redmine/app/models/attachment.rb), a thumbnail representation of
the attachment will be included below the standard attachment links.

The :author option is used to toggle whether the name of the user who originally
uploaded the attachment should be listed along with the attachment.

Managing attachment permissions
Adding attachment functionality to our models through acts_ast_attachable
comes with two preconfigured management permissions: a view permission and a
delete permission.

In order to properly implement these permissions, they would have to be
declared along with our plugin's other named permissions in our init.rb file.
You can refer to Chapter 1, Introduction to Redmine Plugins, for a quick refresher on
declaring custom permissions.

Attaching Files to Models

[50]

Both of these permissions are dynamically generated based on the class name of the
model we've added attachments to.

The format of both the view and delete permissions by default are:

"view_#{self.name.pluralize.underscore}".to_sym
"delete_#{self.name.pluralize.underscore}".to_sym

As our knowledgebase articles are declared in a KbArticle class, the resulting
generated permissions would be :view_kb_articles and :delete_kb_articles.

If we have attachments in an article and try to delete them without properly
declaring and assigning these permissions, Redmine's authorization system will
reject the request and display the following output:

Started DELETE "/attachments/10" for 127.0.0.1 at 2013-12-17 21:50:12
-0500
Processing by AttachmentsController#destroy as HTML
 ...
Filter chain halted as :delete_authorize rendered or redirected
Completed 403 Forbidden in 32ms (Views: 19.6ms | ActiveRecord: 2.2ms)

If we prefer to supply our own permissions to acts_as_attachable, this is done in
our model by providing our own permission symbols to either :delete_permission
or :view_permission.

class KbArticle < ActiveRecord::Base
 # ...
 acts_as_attachable :delete_permission => :manage_articles
 # ...
end

In this example, instead of declaring a :delete_kb_articles permission in our
init.rb file, we would instead declare a :manage_articles permission. This
permission would subsequently be used by attachments_deleteable?(user)
when checking to see whether the current user is allowed to delete an attachment.

Chapter 4

[51]

Summary
In this chapter, we covered the basics of quickly adding the ability to attach files
to our models and how our views and partials could be extended with Redmine's
existing file attachment partials.

We also learned about the various options that are available to acts_as_attachable
as well as how attachment permissions are managed.

In the next chapter, we'll be making our models searchable.

Making Models Searchable
Our knowledgebase plugin is meant to facilitate the creation and management of
large quantities of categorized information. Once this system grows to a certain size,
it will no longer be feasible to simply navigate directly to content when a user is
trying to find something generic.

Redmine provides an extremely versatile search system for all of its own internal
models, which can easily be extended to plugin models through the application of a
couple of built-in plugins.

This chapter will introduce the Redmine search subsystem and how our models can
quickly hook into it.

We will cover the following topics in this chapter:

• Initializing our plugin to be included in Redmine searches
• Setting up the required result formatting through acts_as_event
• Getting our model ready to actually be searched using acts_as_searchable
• How Redmine permissions limit the availability of search functionality
• How custom permissions can be used to override search results

Registering our plugin
The first step to setting up our plugin to be incorporated into Redmine's internal
search is to register our model.

This is done in our plugin's init.rb file anywhere outside the Redmine::Plugin.
register block, using the following code:

Redmine::Search.available_search_types << 'kb_articles'

Making Models Searchable

[54]

Redmine is now aware of our plugin's model and will be looking for it whenever a
project or global search is requested.

Preparing our models to be searched
The acts_as_event plugin is used internally by Redmine in order to maintain
consistency between various models that need to be grouped together.

In our case, the models that are being searched need to have acts_as_event
implemented in order to determine what constitutes a title, how the title will be
formatted, what the description field is, and so on.

Note that acts_as_event is a dependency of acts_as_searchable; therefore, if it
isn't included in our model, Redmine will crash when a search is attempted.

The function prototype for acts_as_event is a standard class method that accepts
an options hash:

def acts_as_event(options = {})

As we'll be marking our knowledgebase articles as searchable, we will begin by
adding acts_as_event to our article model:

class KbArticle < ActiveRecord::Base
 # ...

 acts_as_event :datetime => :updated_at,
 :description => :summary,
 :title => Proc.new { |o| "#{l(:label_title_articles)}
##{o.id} - #{o.title}" },
 :url => Proc.new { |o| { :controller => 'articles',
 :action => 'show',
 :id => o.id,
 :project_id => o.project }
 }

 # ...
end

Chapter 5

[55]

The acts_as_event options hash can be initialized with the following keys:

• :datetime: The field within our model that will be used as a timestamp. The
default is :created_on. Its value can be either Proc or Symbol.

• :title: The model field that will be used when rendering an event title. The
default value is :title. Its value can be either Proc or Symbol.

• :description: The model fields that will be used when displaying
additional information about an entry. The default value is :description.
Its value can be either Proc or Symbol.

• :author: The model field that will be used when author information about
an entry is displayed. The default value is :author. Its value can be either
Proc or Symbol.

• :url: The URL to the record an event refers to. The default value is {
:controller => 'welcome' }. This value can be Proc, a Symbol, Hash, or
String.

• :type: Used by other plugins to filter certain types of events (for example,
see the acts_as_activity_provider class method to find events in the
Redmine source). The default value is the result of self.name.underscore.
dasherize (for example, kb-article).

• :group: Used by the ActivitiesHelper when sorting activity events. The
default group value is self (the model acts_as_event is implemented),
but can be overridden by providing a value to this option. See /path/to/
redmine/app/helpers/activities_helper.rb for more information.

In order to implement acts_as_searchable, the bare minimum options required in
order to ensure that searching will function are :datetime, :description, :title,
and :url.

Configuring search options
Once acts_as_event has been implemented, we can finish preparing our model by
implementing acts_as_searchable.

As with all previous internal plugins, the class extension needs to be included in the
model we will be making searchable.

class KbArticle < ActiveRecord::Base
 validates :title, :presence => true
 validates :category_id, :presence => true
 # ..
 acts_as_searchable :columns => ["#{table_name}.title", "#{table_
name}.content"],

Making Models Searchable

[56]

 :include => [:project],
 :order_column => "#{table_name}.id",
 :date_column => "#{table_name}.created_at"
 # ..
end

This example allows our article model to be incorporated into Redmine's default
search infrastructure, with article titles and the article contents being used as
searchable targets.

The acts_as_searchable plugin takes a number of optional values in the form of a
hash. The most common values are as follows:

• :columns: This specifies the column or array of columns to search.
• :project_key: This is the project foreign key. The default value assumes that

the model we're attaching acts_as_attachable to has a project_id field
defined in the schema.

• :date_column: This is name of the datetime column. The default value is
created_on.

• :sort_order: This is used to sort a column using it's column name. The
default value is either the previously defined :date_column or implied
created_on column.

• :permission: This is the permission required to search the model. This
optional property is used to define a custom permission value that a user
must have in order to be able to search our model. The default value is in
the format:view_"model", so in our case, it would be :view_kb_articles.
If a permission is defined and the current user doesn't have that permission
applied explicitly, the model we're making searchable won't show up as a
filter option in the Redmine search.

If the user didn't have the appropriate permissions, there would not be an option for
Knowledgebase articles.

Chapter 5

[57]

Filtering search results using custom
permissions
In Chapter 3, Permissions and Security, we introduced a custom permission model that
allowed us to whitelist users against certain knowledgebase categories.

As this is functionality that we added to the system, Redmine doesn't understand
how this content needs to be filtered.

To illustrate the process, first we'll ensure that one of our categories has an explicit
whitelist defined.

This category currently contains a number of articles that contain references to
viruses, which is what we'll be using as a search term.

If we were to execute this search as the current user, the results would contain all
articles that contain a reference to the word "virus" either in the title, or in the content
of the article. This is shown in the following screenshot:

Making Models Searchable

[58]

If the user wasn't on the whitelist, trying to select the article would result in an
error, which is the desired behavior in this situation. This situation violates our
security policy though, as it exposes some information about the article even without
allowing the user to access it. A much better solution would be for the results of the
search to not even include content we've explicitly revoked access to.

Since the acts_as_searchable extension adds a search method, we'll override this
method in order to ensure our custom permissions are applied to the results.

override the acts_as_searchable search method in order to filter
 the results
by category permissions
def self.search(tokens, projects=nil, options={})
 # the results are presented as an array with two entries:
 # [0] => an array of the models returned in the search result
 # [1] => the count of the results
 result = super(tokens, projects, options)
 # first we want to check if any of the results shouldn't be
 # visible to the current user
 result[0].delete_if { |article| article.category.blacklisted?(User.
current) }
 # update the total count just in case the results were further
 filtered
 result[1] = result[0].length

 result
end

Although this accomplishes the desired result of reducing the result set to only
content our users should see, it does so after the search has already been executed.

Including article content in the search
In the search we previously executed, there were two issue items returned as well as
one knowledgebase article. When the search results were rendered, the issue items
contained description text with highlighted matches, but our article didn't.

When we first set up acts_as_event, the :description field was mapped to the
article's summary field. As this field is optional in our plugin and may not always
be populated, we want to change this to something that will be present in all articles
we'll be searching.

In order to do this, the implementation of acts_as_event needs to be updated with
a new description mapping of :description to :content.

Chapter 5

[59]

class KbArticle < ActiveRecord::Base
 # ...
 acts_as_event
 :datetime => :updated_at,
 :description => :content,
 :title => Proc.new { |o| "#{l(:label_title_articles)} ##{o.id}
 - #{o.title}" },
 :url => Proc.new { |o| { :controller => 'articles',
 :action => 'show',
 :id => o.id,
 :project_id => o.project } }
 # ...
end

Once this has been done, if we run the search for "virus" again, the results will
contain the article contents as well, as shown in the following screenshot:

Summary
No matter how big or how small our knowledgebase is, having the ability to search
for content makes the system much more useful to our end users.

In this chapter, we learned how the Redmine search system can be extended to
include our custom models in search results as well as how to format the results to
be consistent with other Redmine searchable items.

In the next chapter, we'll be adding our articles and categories to Redmine's
activity stream.

Interacting with the
Activity Stream

One of the most useful features of Redmine is the ability to provide a generic,
timestamp-sorted listing of the happenings within a project (or all projects) using the
activity stream.

Whether we're looking for changesets, issue updates, news, a document of forum
submissions, or any other Redmine project module update, the activity stream will
provide a summarized representation of any content changes.

For our plugin to fully integrate into a Redmine project as a project module, any
update we create should also be reflected within the project's activity stream.

This chapter will introduce the activity stream and how it can be leveraged by plugin
authors in order to provide activity summaries in line with other Redmine activities.

We will cover the following topics in this chapter:

• A summary of Redmine's activity listing subsystem
• An overview of the acts_as_activity_provider internal plugin
• How the acts_as_event plugin applies to acts_as_activity_provider
• How to customize activity stream entries through acts_as_event

Overview of the activity stream
A project's activity stream is directly accessible by navigating to the Activity tab.
Once selected, all available activities are summarized, including present activities.

Interacting with the Activity Stream

[62]

If we wish to see all activities from all available projects, either go to Projects in the
application bar and then select Overall Activity or navigate directly to http://
localhost:3000/activity.

Any model within Redmine that implements the acts_as_activity_provider
plugin can be displayed in the following listing:

The preceding screenshot is taken from the official bug tracker for the Ruby language
(https://bugs.ruby-lang.org/activity).

The screenshot illustrates the two main components of an activity stream:

• The activity filter list
• The activity stream

The filter list allows users to select the project modules that are available in the
stream, assuming their activity providers are defined.

The stream is a list sorted in reverse chronology and comprises all the items that
have been selected from the filter list and occur within the range that has been
defined by the system administrator.

For system administrators, the activity stream limit can be set in http://
localhost:3000/settings, in the setting entry for Days displayed
on project activity under the General tab.

Chapter 6

[63]

Preparing our model
We're going to adapt our KbArticle model so that new articles will be listed in the
activity stream of any project with a knowledgebase.

In Chapter 5, Making Models Searchable, we introduced the acts_as_event plugin as
a prerequisite to use the acts_as_searchable plugin; it also serves as a prerequisite
for acts_as_activity_provider.

If we implement acts_as_activity_provider without acts_as_event and try to
load an activity stream, Redmine will crash with a NoMethodError exception:

NoMethodError (undefined method `event_datetime' for
 #<KbArticle:0x000000042b9428>)

The example we provided in the previous chapter is being cited here for continuity:

class KbArticle < ActiveRecord::Base
 # ...

 acts_as_event :datetime => :updated_at,
 :description => :summary,
 :title => Proc.new { |o| "#{l(:label_title_articles)}
##{o.id} - #{o.title}" },
 :url => Proc.new { |o| { :controller => 'articles',
 :action => 'show',
 :id => o.id,
 :project_id => o.project }
 }

 # ...
end

Note that if your model uses more than one internal Redmine plugin that relies on
acts_as_event, you don't have to implement acts_as_event more than once.

Registering our model
Our model is now capable of integrating with the Redmine activity stream; however,
Redmine is still unaware of our model in this context.

In order to have our model's events actually represented in the activity stream, our
plugin initialization file needs to be updated.

Redmine::Activity.register :kb_articles

Interacting with the Activity Stream

[64]

The preceding entry needs to be added to our init.rb file after the
Redmine::Plugin.register block.

Now that we have registered our model with Redmine, the implementation of acts_
as_activity_provider will produce results in a project's activity stream.

Configuring an activity provider
For a model to be designated as an activity provider, we'll need to implement the
acts_as_activity_provider plugin that comes with Redmine.

The method's signature for this plugin is as follows:

def acts_as_activity_provider(options = {})

If we're looking to dive directly into the source code for the plugin, it is available
as part of our Redmine installation at /path/to/redmine/lib/plugins/acts_as_
activity_provider/lib/acts_as_activity_provider.rb.

The acts_as_activity_provider plugin is another class extension plugin and
requires us to call the acts_as_activity_provider method within our model's
class definition along with some parameters as follows:

class KbArticle < ActiveRecord::Base
 # ...

 acts_as_activity_provider :find_options => {:include => :project},
 :author_key => :author_id,
 :type => 'kb_articles',
 :timestamp => :updated_at
 # ...
end

The acts_as_activity_provider method takes a hash as a parameter. This options
hash accepts a number of potential keys, although none of them is strictly required
due to the default values being available for most. Let's have a look at them:

• :type: Using this, multiple event types can be represented in an activity
stream, and therefore, unique identifiers are required to keep these events
separated. The default value of this option is the model's class name, which is
underscored and pluralized. For example, our model name is KbArticle, so
the default name will be kb_articles.

Chapter 6

[65]

• :permission: This is used if a custom permission has been defined for a user
to view our model's content in an activity stream. If a permission value has
been defined as nil, the default value of :view_project will be used instead.
Even though a default value is available, it is a good practice to provide a
permission named by us as it better isolates our plugin from core Redmine.
For more in-depth coverage of permissions, see Chapter 3, Permissions and
Security.

• :timestamp: This is the datetime field that is used to establish a sort
order for the model. If no value is provided, a default value of the model's
created_on field is used.

• :author_key: This is a symbol that identifies the field within our model that
contains an ID for the user that created a new record. This value needs to
map to a valid Redmine user.

• :find_options: This is used if additional filtration details need to be
provided in order to limit the activity stream results. The values provided to
the :find_options hash should be standard ActiveRecord query options.
For example, find_options in our previous sample implementation contains
:find_options => { :include => :project }, which allows us to name
the project association that will be loaded alongside our model.

Now that we have our activity provider defined and implemented, the Activity tab
of any project in which we've enabled the knowledgebase functionality will contain
knowledgebase articles in the stream.

Customizing activity entries
The acts_as_event plugin mentioned previously is being used to provide a
consistent representation of our data across multiple models by defining common
elements.

The ability to provide Proc as a parameter in most fields (see Chapter 5, Making
Models Searchable) means that we can include executable code within our declaration.

Interacting with the Activity Stream

[66]

In the sample provided earlier in this chapter, we listed article titles as a combination
of their ID value as well as their title:

acts_as_event :title => Proc.new { |o| "#{l(:label_title_articles)}
 ##{o.id} - #{o.title}" }

We're already using a procedure in order to build the link title, so we can take this
even further and append additional information.

In the following example, we'll attach the article tag list to the article title:

 acts_as_event :title => Proc.new { |o| tags = (o.tag_list.blank?)
 ? nil : "[#{o.tag_list.join(', ')}]"; "
 #{l(:label_title_articles)} ##{o.id} - #{o.title} #{tags}" }

Chapter 6

[67]

The link to the article in the activity stream now contains the individual tags
following the article title.

Note that if we change how an element in acts_as_event is being formatted, this
change will also be reflected in all search results.

Unlike acts_as_activity_provider, the acts_as_event
plugin can only be included once per model.

Summary
The activity stream is an extremely useful feature of Redmine and is generally the
starting point for a lot of users when they enter the system.

Having our plugins register with the activity stream provides greater value to end
users as they can quickly see what has been happening within our plugin from the
same screen they would be following up with other plugins and core system events.

In this chapter, we learned how to include our plugin in a project's activity stream as
well as how to tweak the formatting of the results.

In the next chapter, we'll explore plugin configuration management.

Managing Plugin Settings
As we continue to add features and functionalities to our plugin, the need for
custom configuration also becomes more apparent. It is likely that system
administrators will not need all the bells and whistles at all times, or they may
need to fine-tune one thing or another. Having such flexibility results in our plugin
becoming even more appealing.

Redmine provides plugin authors with tools that facilitate the process of managing
plugin-specific settings, which we'll explore in this chapter.

We will cover the following topics in this chapter:

• How to initialize our plugin with settings and default values
• The configuration of the settings partial
• The use of custom settings in controllers and views

An overview of Redmine's global plugin
settings
Redmine provides plugin authors with an integrated configuration system in order
to simplify the management of configuration values:

Managing Plugin Settings

[70]

Plugin settings are only available to Redmine users with administrator privileges.
For these users, a summary of all plugins is available at http://localhost:3000/
admin/plugins.

If a plugin has been configured to provide an administrator with a settings view, a
Configure link will be available.

The information that is displayed for each plugin in the list is pulled from the name,
author, author_url, description, url, and version attributes that were provided
to the Redmine::Plugin.register block in each plugin's init.rb file.

As of Redmine 2.3.4, which was released on November 17, 2013, the
plugin settings management interface is only available for global
configuration. There are no functionalities provided in order to manage
custom per-project settings.

Enabling settings management
In Chapter 1, Introduction to Redmine Plugins, we were introduced to the Redmine
plugin's initialization file as well as some of the attributes, methods, and helpers
available to plugin authors.

The settings attribute was presented as a way for plugin settings to be initialized as
well as a configuration partial view to be defined:

Redmine::Plugin.register :redmine_knowledgebase do
 # ...

 settings :default => {
 :sort_category_tree => 1,
 :show_category_totals => 1,
 :summary_limit => 5,
 :disable_article_summaries => 0
 }, :partial => 'redmine_knowledgebase/knowledgebase_settings'

 # ...
end

Our plugin's settings field is initialized with a hash that expects two keys:

• :default: This key expects a hash, which will be used to initialize our
plugin's settings values to defaults that will be presented on first use.
Once a configuration value has been explicitly set, the default values are no
longer used.

Chapter 7

[71]

• :partial: This holds a relative path to a partial view within our plugin that
can be used to set configuration and settings values. Using the previous
example of redmine_knowledgebase/knowledgebase_settings, the
location of the actual partial view will be /path/to/redmine/plugins/
redmine_knowledgebase/app/views/redmine_knowledgebase/_
knowledgebase_settings.html.erb.

A generic value (for example, settings, config) should not be used as it
can potentially be overwritten by another plugin using the same name.
A good approach is to place your settings partial view in a subfolder
named after your plugin; in our case, redmine_knowledgebase/
knowledgebase_settings.

Configuration management
The partial view we defined when initializing our plugin's settings field will be
rendered when an administrator clicks on the Configure link for our plugin:

The partial that we'll create will be made up of a number of groups. Each group
represents a settings key that we want to update a value for.

The fields that we'll define will be a subset of a predefined form, which is rendered if
our plugin has defined a partial to be used for configuration. This partial is injected
into the form at /path/to/redmine/app/views/settings/plugin.html.erb.

As the form tag has already been defined, all we have to provide are input tags that
capture our settings, values. For this to work properly, we name the input fields
settings[our_setting_name].

<p>
 <%= label_tag :settings_sort_category_tree, l(:allow_sort_category_
tree) %>
 <%= check_box_tag 'settings[sort_category_tree]', 1, @
settings[:sort_category_tree] %>
</p>
<p>
 <%= label_tag :settings_show_category_totals, l(:show_category_
totals) %>

Managing Plugin Settings

[72]

 <%= check_box_tag 'settings[show_category_totals]', 1, @
settings[:show_category_totals] %>
</p>
<p>
 <%= label_tag :settings_summary_limit, l(:summary_item_limit) %>
 <%= text_field_tag "settings[summary_limit]", @settings[:summary_
limit] %>
</p>
<p>
 <%= label_tag :settings_disable_article_summaries, l(:disable_
article_summaries) %>
 <%= check_box_tag 'settings[disable_article_summaries]', 1, @
settings[:disable_article_summaries] %>
 <%= count_article_summaries %>
</p>

The partial we provided to the settings attribute gives us an @settings instance
variable, which will provide the default value of each settings key (assuming we
initialized it).

As we can see, the partial renders our content with a predefined heading and an
Apply button. Also, we didn't have to explicitly define a form as Redmine has
provided this functionality for us.

Exposing plugin methods to the
settings partial
One of the settings we have is a toggle for whether article summaries should
be visible.

As this feature was added after the initial introduction of article summaries, it will be
useful to administrators if they could gauge how many people are actually using this
feature before they disable it.

Chapter 7

[73]

First, we'll define a method in KnowledgebaseSettingsHelper, which is located
at /path/to/redmine/plugins/redmine_knowlegebase/app/helpers/
knowledgebase_settings_helper.rb.

module KnowledgebaseSettingsHelper
 def redmine_knowledgebase_count_article_summaries
 "#{KbArticle.count_article_summaries} of #{KbArticle.count} have
summaries"
 end
end

For reference, the count_article_summaries method that is cited from the
KbArticle model is as follows:

def self.count_article_summaries
 KbArticle.where("summary is not null and summary <> ''").count
end

We'll now update our plugin settings partial to include the summary count. Once
this is done, if we try to refresh the page, an error will be displayed as follows:

ActionView::Template::Error (undefined local variable or method
 `redmine_knowledgebase_count_article_summaries' for
 #<#<Class:0x000000063503f8>:0x000000066c6848>).

The issue here is that the context under which our settings partial view runs does not
have direct access to our plugin's resources. As a result, none of the custom methods
we have in our plugin are available at this point.

In order for Redmine to know what to do with our redmine_knowedgebase_count_
article_summaries method, we'll need to include our helper as a part of Redmine's
SettingsHelper.

This can be accomplished by adding the following block to our plugin's
initialization file:

ActionDispatch::Reloader.to_prepare do
 SettingsHelper.send :include, KnowledgebaseSettingsHelper
end

The method of mixing in functionalities is common in Ruby (and Rails). We wrap
the call in a ActionDispatch::Reloader.to_prepare block (for more information,
see http://api.rubyonrails.org/classes/ActionDispatch/Reloader.
html#method-c-to_prepare) as we want to ensure we don't break any other plugin
that can be mixing functionalities into SettingsHelper.

Managing Plugin Settings

[74]

Once this is done and our application has been restarted, our plugin settings page
will be rendered correctly.

Note that by injecting our own functionalities into Redmine's SettingsHelper,
there's always a chance that we'll override core methods due to identical
naming conventions.

As such, it's a good practice to create a separate helper file with only the functions
that need to be included in the settings helper and ensure that the methods we
include are prefixed such that they stand out as belonging to our plugin.

Accessing our settings
Redmine's Setting model can be used to retrieve the settings values that
we've configured.

The Setting model is used internally by Redmine to manage all internal settings.
Since the actual values that are being stored are YAML-encoded, they can be
more complex than simple strings or integers. The structure of a Setting entry is
as follows:

Setting(id: integer, name: string, value: text,
 updated_on: datetime)

When accessing a plugin settings value, we need to provide the internal name of
the setting as well as the key of the specific settings value we want to retrieve. This
request takes the following form:

Setting['plugin_redmine_knowledgebase'][key]

The naming convention used is plugin_#{plugin.id} as this is how Redmine
internally manages plugin settings (for more information, see /path/to/redmine/
app/models/setting.rb).

Chapter 7

[75]

In the previous section, we discussed the disabling of article summaries if the
administrator sets the appropriate toggle in our plugin's configuration. The following
screenshot is an example of a category list that includes an article with a populated
summary:

Although we've already covered capturing and storing the settings value needed
to disable article summaries, in order to apply this setting to our views, we need to
include a basic value check. This can be done as follows:

<% unless Setting['plugin_redmine_knowledgebase'][:disable_article_
summaries] %>

 <div class="summary">
 <%= article.summary %>
 </div>
<% end %>

Now Redmine will check our global settings before trying to display article
summaries when browsing a category.

Although the preceding example illustrates how we can check settings
values in our views, the process is identical from within our controllers.

Managing Plugin Settings

[76]

Summary
As our plugins evolve and grow, the number of features will grow as well. Since not
all functionality is required in every deployment, allowing administrators to toggle
features on and off will make our plugins much more useful for a larger number of
installations.

In this chapter, we learned how to take advantage of the built-in settings
management functionalities of Redmine and how we can leverage it for our plugins.

In our next chapter, we'll introduce the topic of testing our plugins.

Testing Your Plugin
Rails-based projects are structured to allow software tests to be easily incorporated.
Most open source projects such as Redmine include tests, and contributors are
requested (if not required) to submit tests with their patches. This is especially true
for projects written in dynamic languages such as Ruby.

The Redmine core project has excellent test coverage, and if our plugin relies on
the core features of Redmine, writing tests is a good way to quickly detect Redmine
code changes.

The assumption while going into this chapter is that we are interested in writing
tests that can be run in the same environment as the Redmine core project's test suite.
Whether we feel that Test Driven Development is beneficial or detrimental to our
project and what constitutes a good test are out of the scope of this book as they are
extremely subjective topics.

For a good introduction to Test Driven Development as it relates to Rails
applications, visit http://andrzejonsoftware.blogspot.ca/2007/05/15-tdd-
steps-to-create-rails.html or see the Rails guide to testing applications at
http://guides.rubyonrails.org/testing.html.

The following topics will be covered in this chapter:

• Laying out the test directory for your plugin
• Patching the test case classes to allow core and custom fixtures to coexist
• Rake tasks available for running tests
• An overview of the different types of supported tests
• Running tests
• Hooking our plugin into the Travis continuous integration system

Testing Your Plugin

[78]

Testing infrastructure layout
As we initially used the Redmine plugin generator (see Chapter 1, Introduction to
Redmine Plugins) when we created our plugin, we should already have a skeletal test
directory available for our plugin.

The basic structure of this test folder should be folders named fixtures,
functional, and unit, and a test_helper.rb file.

$ tree test

test

├── fixtures

│ ├── kb_articles.yml

│ └── kb_categories.yml

├── functional

│ ├── articles_controller_test.rb

│ ├── categories_controller_test.rb

├── integration

│ ├── accessing_content_test.rb

├── test_helper.rb

└── unit

 ├── article_test.rb

 └── category_test.rb

The test_helper.rb file that Redmine generates is populated with default
configuration, which loads Redmine's main test helper.

Basics of test fixtures
Fixtures are basically just sample data we set up to be used with our tests. They are
written as individual entries in YAML files, the files being named after the model
they represent. For example, since our article model is stored in a physical kb_
article.rb file, the associated fixture would be named kb_articles.yml and could
contain something similar to the following:

one:
 id: 1
 category_id: 1
 title: "Sample Article One"
 summary: "Summary of Sample Article One"
 content: "Lorem Ipsum …"

Chapter 8

[79]

Each fixture is named (one, in the preceding example) and is then followed by an
indented list of key/value pairs. For a much more detailed dive into fixtures, I would
recommend the guide at http://guides.rubyonrails.org/testing.html#the-
low-down-on-fixtures.

For more information on Redmine's plugin generators, visit
http://www.redmine.org/projects/redmine/wiki/
Plugin_Tutorial#Creating-a-new-Plugin.

Working around a Redmine testing issue
This book is based on the Redmine 2.3.3 final release, and as such, the scenario
described here may not be relevant in future versions of Redmine.

At the time of this writing, if any plugin fixtures are used, the test helper doesn't load
them properly. We know our fixtures aren't loaded properly when we add a custom
fixture to our test layout and get an error similar to the following on running our
tests:

Running tests:

[1/1] ArticlesControllerTest#test_index = 0.02 s
 1) Error:
test_index(ArticlesControllerTest):
Errno::ENOENT: No such file or directory - /path/to/redmine/test/
fixtures/kb_articles.yml

Thanks to the tip at http://www.redmine.org/boards/3/topics/35164?r=3756
5#message-37565, we can monkey patch ActionController::TestCase to work
properly for us.

The necessary patch can just be added to our test_helper.rb:

module Redmine
 module PluginFixturesLoader
 def self.included(base)
 base.class_eval do
 def self.plugin_fixtures(*symbols)
 ActiveRecord::Fixtures.create_fixtures
 (File.dirname(__FILE__) + '/fixtures/', symbols)
 end
 end
 end
 end
end

Testing Your Plugin

[80]

unless ActionController::TestCase.included_modules.include?
 (Redmine::PluginFixturesLoader)
 ActionController::TestCase.send :include,
 Redmine::PluginFixturesLoader
End

Now that ActionController::TestCase is patched, we can include the Redmine
core fixtures as well as our plugin's fixtures in our tests.

Note that we'll want to repeat the monkey patch for ActiveSupport::TestCase so
the same functionality is available when we write our unit tests.

Running tests
Redmine offers some rake tasks to facilitate interacting with a plugin's test suite.
These tasks are shown in the following command:

$ rake -T | grep plugins:test

rake redmine:plugins:test

rake redmine:plugins:test:functionals

rake redmine:plugins:test:integration

rake redmine:plugins:test:units

Running any of these rake tasks will run the tests for all installed plugins. In order to
limit the tests for our plugin, we need to provide a NAME environment variable.

$ rake redmine:plugins:test:functionals NAME=redmine_knowledgebase

Run options:

Running tests:

..

Finished tests in 0.118963s, 16.8119 tests/s, 16.8119 assertions/s.

2 tests, 2 assertions, 0 failures, 0 errors, 0 skips

Chapter 8

[81]

The rake tasks for running plugin tests are standard Rake::TestTask instances
(http://rake.rubyforge.org/classes/Rake/TestTask.html), so passing options
through a TESTOPTS environment variable will work the same as if the parameters
were provided directly.

$ rake redmine:plugins:test:functionals NAME=redmine_knowledgebase
TESTOPTS="-v"

Run options: -v

Running tests:

ArticlesControllerTest#test_truth = 0.10 s = .

CategoriesControllerTest#test_truth = 0.01 s = .

Finished tests in 0.115128s, 17.3719 tests/s, 17.3719 assertions/s.

2 tests, 2 assertions, 0 failures, 0 errors, 0 skips

Writing functional tests
Test cases that target our controller actions are referred to as functional tests. Web
requests are received, and the desired response is generally a rendered view.

The Rails guide indicates that some ideal functional test types would be as follows:

• Whether a web request succeeded
• Whether the user was redirected to the correct page
• Whether the user was authenticated
• Whether the proper template was rendered as a response
• Whether the correct message shows in a view

As we'll be using test cases that derive from ActionController::TestCase
(http://api.rubyonrails.org/classes/ActionController/TestCase.html),
each functional test case should only test a single controller method.

Here is an example of a functional test for our ArticlesController:

require File.dirname(__FILE__) + '/../test_helper'

class ArticlesControllerTest < ActionController::TestCase

Testing Your Plugin

[82]

 fixtures :projects, :roles, :users
 plugin_fixtures :kb_articles, :enabled_modules

 def setup
 User.current = User.find(1)
 @request.session[:user_id] = 1
 @project = Project.find(1)
 end

 def test_index
 Role.find(1).add_permission! :view_kb_articles
 get :index, :project_id => @project.id

 assert_response :success
 assert_template 'index'
 end
end

A few useful methods have been included in this code, which we'll briefly
summarize as follows:

• fixtures: The fixtures method allows us to include fixtures from
Redmine core's test suite (for example, :issues, :roles, :users,
:projects, and so on)

• plugin_fixtures: This is the method we monkey-patched into the various
TestCase classes so that we could interact with Redmine's fixtures as well as
our own custom fixtures

• @request.session[:user_id] = 1: If we need to force membership into a
project for a specific user, we provide it directly to the session

• Role.find(1).add_permission! :view_kb_articles: If we need the
current user to have a particular permission in place in order to fulfil a
request, we can explicitly add it

Writing integration tests
When we want to test more than one component and examine how they'll function
together, or if we want to test the behavior, we write integration tests.

For a more in depth look at Rails integration tests, including what helpers
are available, visit http://guides.rubyonrails.org/testing.
html#integration-testing.

Chapter 8

[83]

The following is an example of an integration test that accesses a category with an
explicitly defined whitelist:

require File.dirname(__FILE__) + '/../test_helper'

class AccessingContentTest < ActionController::IntegrationTest
 fixtures :projects, :users
 plugin_fixtures :kb_articles, :kb_categories
 def setup
 @project = Project.find(1)
 @user_1 = User.find(1)
 @user_2 = User.find(2)
 end

 test "access category with an explicit whitelist defined" do
 cat_wl = KbCategory.find(2)
 assert !cat_wl.user_whitelist.blank?, "Category Whitelist expected
to be populated"

 assert !cat_wl.blacklisted?(@user_1), "User 1 is supposed to be
whitelisted"
 assert cat_wl.blacklisted?(@user_2), "User 2 is supposed to not be
whitelisted"
 end
end

This is not meant to be an example of how to write a good test, just a very basic
integration test.

Writing unit tests
Unit tests within Ruby on Rails applications tend to involve writing tests for
models. A good practice is to include tests for all validations, and at least one
test per method. Ideally though, tests should be written for anything that could
possibly break.

If we were writing the tests first, we would start with something like the
following code:

require File.dirname(__FILE__) + '/../test_helper'

class CategoryTest < ActiveSupport::TestCase
 plugin_fixtures :kb_categories

 test "should not save category without title" do

Testing Your Plugin

[84]

 category = KbCategory.new
 assert !category.save, "Saved the category without a title"
 end
end

If we had yet to configure our model, this test would fail until we added a presence
validation to our category model.

Preparing a test database
If this is the first time tests are being run against Redmine, we'll need to first initialize
the testing environment.

A test database should first be defined in the path /path/to/redmine/config/
database.yml, and then the following rake tasks can be run to set up the database:

rake db:drop db:create db:migrate redmine:plugins:migrate redmine:load_
default_data RAILS_ENV=test

The first command drops the tests database, creates a fresh one, and then runs the
Redmine core migrations and all migrations for any installed plugins.

The second command is used to seed the test database with Redmine's default
data. For a peek into what constitutes default data, see the contents of /path/to/
redmine/lib/redmine/default_data/loader.rb.

Once the test database has been initialized, we can use the rake tasks introduced at
the beginning of this chapter to run the tests for our plugin.

Note that running the full suite can take a bit of time, so if you're trying to just run a
single test case, you can execute it directly.

As an example, if we wanted to run the ArticlesControllerTest test case for our
knowledgebase plugin, we would execute the following command from the root of
our Redmine installation:

ruby $(pwd)/plugins/redmine_knowledgebase/test/functional/articles_
controller_test.rb

Continuous integration with Travis
Travis CI (https://travis-ci.org/) is a hosted continuous integration service
for the open source community. It is integrated with GitHub and offers first class
support for a number of languages, including Ruby.

Chapter 8

[85]

Travis is generally meant to run tests against a standalone application, but since
we're building plugins for Redmine, we'll need a bit of help in order to bootstrap
the process.

Using the samples from https://github.com/alexbevi/redmine_plugins_
travis-ci, we can configure our plugin to be tested against the latest version
of Redmine.

In order to actually integrate our plugin with Travis, the sample files we downloaded
from the repository we just mentioned needs to be added to our plugin's root folder,
checked into our Git repository, and pushed to GitHub.

More information on the configuration of Travis CI Redmine helpers can be found
at https://github.com/alexbevi/redmine_plugins_travis-ci/blob/master/
README.md.

With the basic tests that we've written for our plugin, once Travis runs, we can check
the results on whose website to check whether our tests passed or failed.

The basic layout of a Travis CI test run is broken down into two sections. The first is
basic information about which commit triggered the build and the status of the tests
run against that build. The second is a build matrix that outlines some information
about the test jobs that were run.

Testing Your Plugin

[86]

If our tests failed, we can drill down further using the build matrix, which lists
the various Travis jobs that are associated with the current configuration we've
defined for our test environment (visit http://docs.travis-ci.com/user/build-
configuration/#The-Build-Matrix). The details provided here by Travis should
be similar, if not identical, to what we were seeing when running the tests locally.

Now that we have our plugin integrated with the Travis CI service, we can update
our README.md file with a badge that indicates the current status of our plugin's tests.

Wherever we want the badge to appear within the README.md file, just add the
following sample markdown formatted text:

[![Build Status](https://travis-ci.org/<user>/<project>.png)](https://
travis-ci.org/<user>/<project>)

The <user> and <project> values should be replaced by your GitHub username
and the project name on GitHub that represents the Redmine plugin we're working
on. For our knowledgebase, we will be using alexbevi/redmine_knowledgebase.

Summary
Test Driven Development and testing in general are very popular among Ruby and
Ruby on Rails developers. The fact that any new Rails project that you generate
automatically includes basic tests as part of the scaffolding and generators serves as
some pretty good reinforcement of that.

Chapter 8

[87]

This chapter was not meant to serve as an introduction to Test Driven Development
or testing or even to try to reinforce the value of writing tests. If the testing tools
provided by Rails are not suitable to our needs, there are numerous testing
frameworks available that can be used instead. There are also a myriad breakdowns
of what types of tests should be written for what types of scenarios and under
what circumstances.

Redmine has very good code coverage and provides a lot of excellent examples of
the basic test types in its own test/ directory. Our tests in this chapter were meant
to be examples of how to tie plugin testing into Redmine's testing infrastructure and
how Redmine test assets could be accessed therein.

In our final chapter, we'll be gaining some insight into the process of releasing
our plugin to the Redmine community as well as some tips to encourage
community participation.

Releasing Your Plugin
Congratulations! You've now built a plugin that can be used to add value to any
Redmine deployment. There is, however, one last step in the process: release
management.

This isn't really an authorship step, and as such is being included as an appendix.
This is also not meant to be taken as the only way a plugin can be released, but a set
of suggestions that will help give you exposure within the Redmine community. The
following topics will be covered in this appendix:

• Getting your source code online
• Writing about your releases
• Publishing your plugin to Redmine's plugin directory
• Promoting your plugin on Redmine's forums

Managing your plugin's source code
The assumption being made is that you're planning on releasing your plugin's source
code under an open source license. If you're working on a proprietary plugin, please
disregard this section.

Depending on what source control tools you're using, there are different communities
available online that offer free hosting of source code for public projects:

• Git (http://git-scm.com)
 ° GitHub (https://github.com)
 ° Gitorious (https://gitorious.org)

• Subversion (http://subversion.apache.org)
 ° Google Code (https://code.google.com)
 ° SourceForge (http://sourceforge.net)

Releasing Your Plugin

[90]

• Mercurial (http://mercurial.selenic.com)
 ° Bitbucket (https://bitbucket.org)
 ° Codeplex (http://www.codeplex.com)

This list is not meant to be an exhaustive one; it's meant only to serve as links to
some of the most popular hosting solutions based on the source control tool you
choose. The majority of these sites actually host more than one source control tool, so
you've got options!

We will be using Git and GitHub for our examples, as this combo is quite popular
among Redmine developers, as well as the Ruby community as a whole.

Depending on your level of experience with Git, you may want to read https://
help.github.com/articles/set-up-git first, as this covers most of what is
required in order to get started with Git. Continuing with the GitHub help pages
will also assist with getting a repository configured, checking your code in, and
pushing your code to GitHub for the world to see. The following is a screenshot of
the Redmine knowledgebase GitHub page:

Now that our plugin is online and available, we'll want to ensure that we have Issues
management enabled. This feature allows users and other developers to provide
feedback and bug reports.

If you decide not to use GitHub, most (if not all) other available source management
sites will provide some form of issue tracking feature.

Starting a blog
Now that our source has been published, we should write about why we created this
plugin in the first place.

Actually, starting a blog is a bit out of the scope for this book, but if you're new
to this process I would recommend GitHub Pages (http://pages.github.com),
WordPress (http://wordpress.com), or Blogger (http://www.blogger.com).

Appendix

[91]

Whether the goal was to solve a particular problem at work, fulfill some edge case
we identified, or just scratch an itch, providing a bit of extra information about our
motivation may help to encourage some users to take our plugin for a spin.

Once we begin to revise our plugin and add new features, the blog can also be used
to announce new versions and include change log information.

A link to the blog can also be included within our plugin's initialization section
as the author_url value (see Chapter 1, Introduction to Redmine Plugins for
more information).

Publishing your plugin on redmine.org
Once our source control needs have been met and our introductory site has been
established, we can introduce our plugin to the Redmine community at http://www.
redmine.org/plugins/.

Create an account and navigate to the plugin directory at http://www.redmine.
org/plugins. From the plugin management screen, we can register our new plugin
via the Register a new plugin link.

To register our plugin, we need to provide some basic information such as the plugin
name, identifier, description, home page, code repository, a thumbnail, and any
additional installation notes. Next, we'll have to provide details about the current
version that we've just released:

Releasing Your Plugin

[92]

The Redmine compatibility section is a series of checkboxes that we set to indicate
which version(s) of Redmine our plugin is known to work with.

The Files section can be used to attach an archive of this version of the plugin,
assuming it doesn't exceed the maximum file size of 500 KB. If this is the case, we
will have to host the file elsewhere and link to it in the Release Notes section, which
is available after we publish our plugin or any time we add a new version.

Announcing your plugin on redmine.org
With our initial release available within Redmine's plugin directory, we'll want to
make an announcement in the Redmine forums as well advertise our release.

Navigate to http://www.redmine.org/projects/redmine/boards, select the
Plugins board, and then click on New message.

The subject should be kept brief and mention the name of the plugin listed (possibly
as we listed it in our init.rb file under the name attribute).

The actual contents of this first post should give a brief introduction of what the
plugin does, as well as provide links to the plugin in the plugin directory on GitHub
(or whatever source control system we've selected):

If you composed a particularly clean and concise blog post introducing the plugin,
you could simply copy and paste the contents as the introductory forum post.

Initially, this post will likely be the primary communication channel for feedback for
your plugin, so make sure you keep it "watched" and respond to the community in
a timely fashion.

Appendix

[93]

Summary
Our plugin is now out in the wild and we're quickly gathering a devoted user base. It
is important to take ownership of our plugin and review the issue reports,
feature requests, e-mails, forum posts, and whatever other feedback the community
may provide.

In this appendix, we covered some basic steps that can be taken in order to publish
our plugin using features that Redmine (http://www.redmine.org) makes
available, as well as some basic source control services that are freely available.

This concludes our journey into Redmine plugin extension and development. I hope
this guide has answered most of your questions regarding the topics we've covered.
If not, there is a vast community available online at http://www.redmine.org, and
a multitude of projects in various stages of completion hosted at https://github.
com that can be used to answer questions or draw inspiration.

Cheers and happy coding!

Index
Symbols
*after parameter 16
:author field 47, 55
:author_key 65
*before parameter 16
*caption parameter 16
:columns field 56
:controller 22
:date_column field 56
:datetime field 55
:default 70
:deletable 48
:description field 55
:find_options 65
*first parameter 16
:group field 55
:hook_caller 22
*html parameter 16
*if parameter 16
*last parameter 16
:manage_members permission 30
*param parameter 16
:partial 71
:permission field 56, 65
:project 22
:project_key field 56
*public option 17
:read option 17
:request 22
*require option 17
:sort_order field 56
:thumbnails 48
:timestamp 65

:title field 55
:type 64
:type field 55
:url field 55
:view_issues_show_description_bottom

hook 26

A
access control layer

about 36, 37
access via whitelists, managing 38, 39
user whitelists, managing 37, 38
whitelist, enforcing 39, 40

action parameter 34
activity entries

customizing 65-67
activity filter list 62
activity provider

configuring 64, 65
activity_provider helper plugin 19
activity stream

overview 61, 62
acts_as_activity_provider plugin 62, 64
acts_as_event plugin 54, 55, 65
allowed_to? function 33
article content

including, in search 58
attachments

about 45
accomodating, by controlling modifications

46, 47
in views, enabling 45, 46
listing 47-49

[96]

managing 47-49
permissions, managing 49, 50

authorize_for view helper method 35
authorize_global method 34

B
Bitbucket

URL 90
blog

starting 90, 91
Blogger

URL 90
Bundler 10

C
callback

identifying 26
call_hook method 22
Codeplex

URL 90
continuous integration

with Travis 85, 86
controller hooks 24, 25
controllers

access restrictions 33, 35
Core Redmine features

custom events, adding to activity stream 19
custom text formatting macros, registering

19
named permissions, initializing 17
project module availability 18
Redmine menus 16, 17

F
fixtures method 82
functional tests

writing 81, 82

G
Git

URL 89
GitHub

URL 9, 89
GitHub Pages

URL 90
Gitorious

URL 89
global plugin settings 69, 70
Google Code

URL 89

H
helper hooks 26
hooks

about 21, 22
controller hooks 24, 25
helper hooks 26
implementing 26
integrating 27
model hooks 25
URL 22
view hook implementation 26
view hooks 22-24

hooks, implementing
callback, identifying 26
hook, integrating 27
view partial, creating 27, 28

I
infrastructure layout

testing 78
initialization checks

plugins existence, ensuring 15
specific Redmine version, checking 15

initialization file
checks 14
Core Redmine features, extending 16
including 12, 13
plugin attributes 13, 14

integration tests
writing 82, 83

K
knowledgebase plugin 53

L
link_to method 35

[97]

M
management

configuring 71, 72
Mercurial

URL 90
model hooks 25, 26
models

access restrictions 33
preparing 43, 44, 63
preparing, to be searched 54, 55
registering 63, 64

model, view, and controller (MVC) 7

N
new plugin

controllers, generating 11, 12
custom gemsets, using in 10
generating 8, 10
models, generating 11

P
permissions

about 29-31
custom permissions, declaring 31-33

plugin
announcing, on redmine.org 92
publishing, on redmine.org 91, 92
registering 53, 54
score card, managing 89, 90

plugin_fixtures method 82
plugin methods

exposing, to settings partial 72, 73
project_module block 18

R
Rails-based projects 77
Rails Engines plugin 10
Redmine

about 7, 21
permissions system 29
testing issue 79, 80

Redmine compatibility section 92
Redmine core project 77

redmine.org
plugin, announcing on 92
plugin, publishing on 91, 92

redmine_plugin generator 9
render_on helper method 23
Rubygems

URL 36
Ruby on Rails framework 7
Ruby on Rails migrations

URL 37

S
sample plugin 7
search

article content, including 58
search options

configuring 55, 56
search results

filtering, custom permissions used 57, 58
Semantic Versioning 14
settings management

enabling 70, 71
settings model

accessing 74, 75
Sourceforge

URL 89
Subversion

URL 89

T
tests

database, preparing 84
fixtures 78, 79
functional tests, writing 81, 82
integration tests, writing 82, 83
running 80, 81
unit tests, writing 83, 84

Travis
continuous integration with 84-86

U
unit tests

writing 83, 84
user whitelists

managing 37-39

[98]

V
view hooks 22, 23
view partial

creating 27
views

access restrictions 33, 35
attachments, enabling 45, 46

W
whitelist

enforcing 39, 40
WordPress

URL 90

Thank you for buying
Redmine Plugin Extension and Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Redmine
ISBN: 978-1-84951-914-4 Paperback: 366 pages

A comprehensive guide with tips, tricks and best
practices, and an easy-to-learn structure

1. Use Redmine in the most effective manner and
learn to master it.

2. Become an expert in the look and feel with
behavior and workflow customization.

3. Utilize the natural flow of chapters, from initial
and simple topics to advanced ones.

Instant RubyMine Assimilation
ISBN: 978-1-84969-876-4 Paperback: 66 pages

Utilize the RubyMine IDE to develop your own Ruby
on Rails applications

1. Learn something new in an Instant! A
short, fast, focused guide delivering
immediate results.

2. Incorporate features of RubyMine into
your everyday Ruby and Ruby on Rails
development workflow.

3. Learn about the integrated testing and
debugging tools to make your coding
bulletproof and productive.

Please check www.PacktPub.com for information on our titles

RubyMotion iOS Development
Essentials
ISBN: 978-1-84969-522-0 Paperback: 262 pages

Create apps that utilize iOS device capabilities
without learning Objective-C

1. Get your iOS apps ready faster with
RubyMotion.

2. Use iOS device capabilities such as GPS,
camera, multitouch, and many more in
your apps.

3. Learn how to test your apps and launch them
on the AppStore.

4. Use Xcode with RubyMotion and extend your
RubyMotion apps with Gems.

Ext JS 4 Plugin and Extension
Development
ISBN: 978-1-78216-372-5 Paperback: 116 pages

A hands-on development of several Ext JS plugins
and extensions

1. Easy-to-follow examples on Ext JS plugins
and extensions.

2. Step-by-step instructions on developing Ext JS
plugins and extensions.

3. Provides a walkthrough of several useful Ext JS
libraries and communities.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Redmine Plugins
	An introduction to our sample plugin
	Generating a new plugin
	Using custom gemsets in our plugin
	Generating models and controllers

	Diving into the initialization file
	Plugin attributes
	Initialization checks
	Checking for a specific Redmine version
	Ensuring the existence of other plugins

	Extending core Redmine features
	Working with Redmine menus
	Initializing named permissions
	Project module availability
	Adding custom events to the activity stream
	Registering custom text formatting macros

	Summary

	Chapter 2: Extending Redmine Using Hooks
	Understanding hooks
	View hooks
	Controller hooks
	Model hooks
	Helper hooks
	A sample view hook implementation
	Identifying the callback
	Integrating the hook
	Creating the view partial

	Summary

	Chapter 3: Permissions and Security
	Summarizing Redmine's permissions system
	Declaring custom permissions
	Ensuring access restrictions in models, views, and controllers
	Understanding custom content access control
	Managing user whitelists
	Restricting access via whitelists
	Enforcing the whitelist

	Summary

	Chapter 4: Attaching Files to Models
	Model preparation
	Enabling attachments in our views
	Controller modifications to accommodate attachments
	Listing and managing attachments
	Managing attachment permissions
	Summary

	Chapter 5: Making Models Searchable
	Registering our plugin
	Preparing our models to be searched
	Configuring search options
	Filtering search results using custom permissions
	Including article content in the search
	Summary

	Chapter 6: Interacting with the Activity Stream
	Overview of the activity stream
	Preparing our model
	Registering our model
	Configuring an activity provider
	Customizing activity entries
	Summary

	Chapter 7: Managing Plugin Settings
	An overview of Redmine's global plugin settings
	Enabling settings management
	Configuration management
	Exposing plugin methods to the
settings partial
	Accessing our settings
	Summary

	Chapter 8: Testing Your Plugin
	Testing infrastructure layout
	Basics of test fixtures
	Working around a Redmine testing issue

	Running tests
	Writing functional tests
	Writing integration tests
	Writing unit tests
	Preparing a test database
	Continuous integration with Travis
	Summary

	Appendix: Releasing Your Plugin
	Managing your plugin's source code
	Starting a blog
	Publishing your plugin on redmine.org
	Announcing your plugin on redmine.org
	Summary

	Index

